These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
598 related articles for article (PubMed ID: 33383237)
1. Method development and evaluation of pyrolysis oils from mixed waste plastic by GC-VUV. Dunkle MN; Pijcke P; Winniford WL; Ruitenbeek M; Bellos G J Chromatogr A; 2021 Jan; 1637():461837. PubMed ID: 33383237 [TBL] [Abstract][Full Text] [Related]
2. Comparing different methods for olefin quantification in pygas and plastic pyrolysis oils: Gas chromatography-vacuum ultraviolet detection versus comprehensive gas chromatography versus bromine number titration. Dunkle MN; Benedetti C; Pijcke P; van Belzen R; Boekwa M; Mitsios M; Ruitenbeek M; Bellos G J Chromatogr A; 2024 Jan; 1713():464569. PubMed ID: 38091845 [TBL] [Abstract][Full Text] [Related]
3. Quantification of the composition of liquid hydrocarbon streams: Comparing the GC-VUV to DHA and GCxGC. Dunkle MN; Pijcke P; Winniford B; Bellos G J Chromatogr A; 2019 Feb; 1587():239-246. PubMed ID: 30583879 [TBL] [Abstract][Full Text] [Related]
4. Maximizing olefin production via steam cracking of distilled pyrolysis oils from difficult-to-recycle municipal plastic waste and marine litter. Kusenberg M; Faussone GC; Thi HD; Roosen M; Grilc M; Eschenbacher A; De Meester S; Van Geem KM Sci Total Environ; 2022 Sep; 838(Pt 2):156092. PubMed ID: 35605869 [TBL] [Abstract][Full Text] [Related]
5. Can Pyrolysis Oil Be Used as a Feedstock to Close the Gap in the Circular Economy of Polyolefins? Erkmen B; Ozdogan A; Ezdesir A; Celik G Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850143 [TBL] [Abstract][Full Text] [Related]
7. Thermal pyrolysis of waste versus virgin polyolefin feedstocks: The role of pressure, temperature and waste composition. Abbas-Abadi MS; Kusenberg M; Zayoud A; Roosen M; Vermeire F; Madanikashani S; Kuzmanović M; Parvizi B; Kresovic U; De Meester S; Van Geem KM Waste Manag; 2023 Jun; 165():108-118. PubMed ID: 37119685 [TBL] [Abstract][Full Text] [Related]
8. Assessing the feasibility of chemical recycling via steam cracking of untreated plastic waste pyrolysis oils: Feedstock impurities, product yields and coke formation. Kusenberg M; Roosen M; Zayoud A; Djokic MR; Dao Thi H; De Meester S; Ragaert K; Kresovic U; Van Geem KM Waste Manag; 2022 Mar; 141():104-114. PubMed ID: 35101750 [TBL] [Abstract][Full Text] [Related]
9. Quantitative determination of olefins in pyrolysis oils from waste plastics and tires using selective adsorption by Ag-SiO Auersvald M; Šiman M; Vozka P; Straka P Talanta; 2025 Jan; 281():126792. PubMed ID: 39241645 [TBL] [Abstract][Full Text] [Related]
10. Plastic waste management: A road map to achieve circular economy and recent innovations in pyrolysis. N S Sci Total Environ; 2022 Feb; 809():151160. PubMed ID: 34695478 [TBL] [Abstract][Full Text] [Related]
11. Production of an alternative fuel by the co-pyrolysis of landfill recovered plastic wastes and used lubrication oils. Breyer S; Mekhitarian L; Rimez B; Haut B Waste Manag; 2017 Feb; 60():363-374. PubMed ID: 28063835 [TBL] [Abstract][Full Text] [Related]
12. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Jeswani H; Krüger C; Russ M; Horlacher M; Antony F; Hann S; Azapagic A Sci Total Environ; 2021 May; 769():144483. PubMed ID: 33486181 [TBL] [Abstract][Full Text] [Related]
14. Pyrolysis of mixed engineering plastics: Economic challenges for automotive plastic waste. Stallkamp C; Hennig M; Volk R; Stapf D; Schultmann F Waste Manag; 2024 Mar; 176():105-116. PubMed ID: 38277808 [TBL] [Abstract][Full Text] [Related]
15. Physico-chemical properties of excavated plastic from landfill mining and current recycling routes. Canopoli L; Fidalgo B; Coulon F; Wagland ST Waste Manag; 2018 Jun; 76():55-67. PubMed ID: 29622377 [TBL] [Abstract][Full Text] [Related]
16. Experimental investigation on slow thermal pyrolysis of real-world plastic wastes in a fixed bed reactor to obtain aromatic rich fuel grade liquid oil. Subhashini ; Mondal T J Environ Manage; 2023 Oct; 344():118680. PubMed ID: 37531671 [TBL] [Abstract][Full Text] [Related]
17. Opportunities and challenges for the application of post-consumer plastic waste pyrolysis oils as steam cracker feedstocks: To decontaminate or not to decontaminate? Kusenberg M; Eschenbacher A; Djokic MR; Zayoud A; Ragaert K; De Meester S; Van Geem KM Waste Manag; 2022 Feb; 138():83-115. PubMed ID: 34871884 [TBL] [Abstract][Full Text] [Related]
18. Chemical recycling of plastic waste: Bitumen, solvents, and polystyrene from pyrolysis oil. Baena-González J; Santamaria-Echart A; Aguirre JL; González S Waste Manag; 2020 Dec; 118():139-149. PubMed ID: 32892091 [TBL] [Abstract][Full Text] [Related]
19. Integrating PET chemical recycling with pyrolysis of mixed plastic waste via pressureless alkaline depolymerization in a hydrocarbon solvent. Konarova M; Batalha N; Fraga G; Ahmed MHM; Pratt S; Laycock B Waste Manag; 2024 Feb; 174():24-30. PubMed ID: 38000219 [TBL] [Abstract][Full Text] [Related]
20. Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics. Gug J; Cacciola D; Sobkowicz MJ Waste Manag; 2015 Jan; 35():283-92. PubMed ID: 25453320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]