BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33383248)

  • 1. Interactive effects of increasing atmospheric CO
    Wen J; Zou D
    Chemosphere; 2021 Apr; 269():129397. PubMed ID: 33383248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excess copper induced proteomic changes in the marine brown algae Sargassum fusiforme.
    Zou HX; Pang QY; Zhang AQ; Lin LD; Li N; Yan XF
    Ecotoxicol Environ Saf; 2015 Jan; 111():271-80. PubMed ID: 25450944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of light intensity and ammonium stress on photosynthesis in Sargassum fusiforme seedlings.
    Hong M; Ma Z; Wang X; Shen Y; Mo Z; Wu M; Chen B; Zhang T
    Chemosphere; 2021 Jun; 273():128605. PubMed ID: 33077190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc toxicity alters the photosynthetic response of red alga Pyropia yezoensis to ocean acidification.
    Ma J; Wang W; Liu X; Wang Z; Gao G; Wu H; Li X; Xu J
    Environ Sci Pollut Res Int; 2020 Jan; 27(3):3202-3212. PubMed ID: 31838674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photophysiological responses of the marine macroalga Gracilariopsis lemaneiformis to ocean acidification and warming.
    Yang Y; Li W; Li Y; Xu N
    Mar Environ Res; 2021 Jan; 163():105204. PubMed ID: 33213860
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of the edible seaweed Sargassum fusiforme to copper pollution: short-term acclimation and long-term adaptation.
    Zou HX; Pang QY; Lin LD; Zhang AQ; Li N; Lin YQ; Li LM; Wu QQ; Yan XF
    PLoS One; 2014; 9(7):e101960. PubMed ID: 25025229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of elevated atmospheric CO
    Ma H; Zou D; Wen J; Ji Z; Gong J; Liu C
    Environ Sci Pollut Res Int; 2018 Nov; 25(33):33361-33369. PubMed ID: 30259325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Responses of diurnal variation of flag-leaf photosynthesis and photosynthetic pigment content to elevated atmospheric CO
    Yuan MM; Zhu JG; Liu G; Wang WL
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):167-175. PubMed ID: 29692025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria.
    Götze S; Matoo OB; Beniash E; Saborowski R; Sokolova IM
    Aquat Toxicol; 2014 Apr; 149():65-82. PubMed ID: 24572072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of increased CO
    Wu H; Feng J; Li X; Zhao C; Liu Y; Yu J; Xu J
    Mar Pollut Bull; 2019 Sep; 146():639-644. PubMed ID: 31426203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High nutrient availability modulates photosynthetic performance and biochemical components of the economically important marine macroalga Kappaphycus alvarezii (Rhodophyta) in response to ocean acidification.
    Long C; Zhang Y; Wei Z; Long L
    Mar Environ Res; 2024 Feb; 194():106339. PubMed ID: 38182500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responses of photosynthesis-related genes in Sargassum horneri to high temperature stress.
    Dai W; Wang X; Zhuang M; Sun J; Shen Y; Xia Z; Wu T; Jiang R; Li A; Bi F; Zhang J; He P
    Mar Pollut Bull; 2024 Feb; 199():115944. PubMed ID: 38142666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of nitrogen application and elevated atmospheric CO2 on electron transport and energy partitioning in flag leaf photosynthesis of wheat].
    Zhang XC; Yu XF; Ma YF
    Ying Yong Sheng Tai Xue Bao; 2011 Mar; 22(3):673-80. PubMed ID: 21657023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper exposure and seawater acidification interaction: Antagonistic effects on biomarkers in the zooxanthellate scleractinian coral Mussismilia harttii.
    Marangoni LFB; Pinto MMAN; Marques JA; Bianchini A
    Aquat Toxicol; 2019 Jan; 206():123-133. PubMed ID: 30472481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The combined effects of ocean acidification and copper on the physiological responses of the tropical coral Stylophora pistillata.
    Cryer SE; Schlosser C; Allison N
    Mar Environ Res; 2022 Apr; 176():105610. PubMed ID: 35358910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating bloom potential of the green-tide forming alga Ulva ohnoi under ocean acidification and warming.
    Kang EJ; Han AR; Kim JH; Kim IN; Lee S; Min JO; Nam BR; Choi YJ; Edwards MS; Diaz-Pulido G; Kim C
    Sci Total Environ; 2021 May; 769():144443. PubMed ID: 33493906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excess copper promotes photoinhibition and modulates the expression of antioxidant-related genes in Zostera muelleri.
    Buapet P; Mohammadi NS; Pernice M; Kumar M; Kuzhiumparambil U; Ralph PJ
    Aquat Toxicol; 2019 Feb; 207():91-100. PubMed ID: 30553148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of Juvenile
    Zhang W; He L; Pan J; Zhou Y; Ge R; Li S; Shi Y; Chen X; Chu Y
    Plants (Basel); 2023 Mar; 12(5):. PubMed ID: 36903998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of Zn and Cu enrichment under ocean acidification scenario on a phytoplankton community from tropical upwelling system.
    Sharma D; Biswas H; Silori S; Bandyopadhyay D; Shaik AU; Cardinal D; Mandeng-Yogo M; Ray D
    Mar Environ Res; 2020 Mar; 155():104880. PubMed ID: 32072984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocean acidification increases copper accumulation and exacerbates copper toxicity in Amphioctopus fangsiao (Mollusca: Cephalopoda): A potential threat to seafood safety.
    Zheng J; Li Q; Zheng X
    Sci Total Environ; 2023 Sep; 891():164473. PubMed ID: 37244623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.