These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 33383276)
21. Two visual systems in one brain: neuropils serving the secondary eyes of the spider Cupiennius salei. Strausfeld NJ; Barth FG J Comp Neurol; 1993 Feb; 328(1):43-62. PubMed ID: 7679122 [TBL] [Abstract][Full Text] [Related]
22. Immunolocalisation of crustacean-SIFamide in the median brain and eyestalk neuropils of the marbled crayfish. Polanska MA; Yasuda A; Harzsch S Cell Tissue Res; 2007 Nov; 330(2):331-44. PubMed ID: 17828557 [TBL] [Abstract][Full Text] [Related]
23. The allometry of the arcuate body in the postembryonic development of the giant house spider Eratigena atrica. Napiórkowska T; Kobak J Invert Neurosci; 2018 Mar; 18(2):3. PubMed ID: 29525854 [TBL] [Abstract][Full Text] [Related]
24. Neuroarchitecture of the color and polarization vision system of the stomatopod Haptosquilla. Kleinlogel S; Marshall NJ; Horwood JM; Land MF J Comp Neurol; 2003 Dec; 467(3):326-42. PubMed ID: 14608597 [TBL] [Abstract][Full Text] [Related]
25. Vestigial organs alter fossil placements in an ancient group of terrestrial chelicerates. Gainett G; Klementz BC; Blaszczyk P; Setton EVW; Murayama GP; Willemart R; Gavish-Regev E; Sharma PP Curr Biol; 2024 Mar; 34(6):1258-1270.e5. PubMed ID: 38401545 [TBL] [Abstract][Full Text] [Related]
26. How visual space maps in the optic neuropils of a crab. De Astrada MB; Medan V; Tomsic D J Comp Neurol; 2011 Jun; 519(9):1631-9. PubMed ID: 21452243 [TBL] [Abstract][Full Text] [Related]
27. Morphology of the tracheal system of camel spiders (Chelicerata: Solifugae) based on micro-CT and 3D-reconstruction in exemplar species from three families. Franz-Guess S; Klußmann-Fricke BJ; Wirkner CS; Prendini L; Starck JM Arthropod Struct Dev; 2016 Sep; 45(5):440-451. PubMed ID: 27519794 [TBL] [Abstract][Full Text] [Related]
28. Three-dimensional organization of the brain and distribution of serotonin in the brain and ovary, and its effects on ovarian steroidogenesis in the giant freshwater prawn, Macrobrachium rosenbergii. Soonthornsumrith B; Saetan J; Kruangkum T; Thongbuakaew T; Senarai T; Palasoon R; Sobhon P; Sretarugsa P Invert Neurosci; 2018 Mar; 18(2):5. PubMed ID: 29560546 [TBL] [Abstract][Full Text] [Related]
29. Variations on a theme: Morphological variation in the secondary eye visual pathway across the order of Araneae. Long SM J Comp Neurol; 2021 Feb; 529(2):259-280. PubMed ID: 32400022 [TBL] [Abstract][Full Text] [Related]
30. Neural organization of afferent pathways from the stomatopod compound eye. Thoen HH; Strausfeld NJ; Marshall J J Comp Neurol; 2017 Oct; 525(14):3010-3030. PubMed ID: 28577301 [TBL] [Abstract][Full Text] [Related]
31. Neural organization of the second optic neuropil, the medulla, in the highly visual semiterrestrial crab Neohelice granulata. Sztarker J; Tomsic D J Comp Neurol; 2014 Oct; 522(14):3177-93. PubMed ID: 24659096 [TBL] [Abstract][Full Text] [Related]
32. Ultrastructure of spermatozoa of Solifuges (Arachnida, Solifugae): possible characters for their phylogeny? Klann AE; Bird T; Peretti AV; Gromov AV; Alberti G Tissue Cell; 2009 Apr; 41(2):91-103. PubMed ID: 18774581 [TBL] [Abstract][Full Text] [Related]
33. A new species of the solifuge genus Galeodes Olivier, 1791 from southeastern Turkey (Solifugae, Galeodidae). Erdek M Zootaxa; 2021 Jun; 4991(1):116-130. PubMed ID: 34186733 [TBL] [Abstract][Full Text] [Related]
34. Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. Homberg U; Hofer S; Pfeiffer K; Gebhardt S J Comp Neurol; 2003 Aug; 462(4):415-30. PubMed ID: 12811810 [TBL] [Abstract][Full Text] [Related]
35. Binocular Neuronal Processing of Object Motion in an Arthropod. Scarano F; Sztarker J; Medan V; Berón de Astrada M; Tomsic D J Neurosci; 2018 Aug; 38(31):6933-6948. PubMed ID: 30012687 [TBL] [Abstract][Full Text] [Related]
36. The book lungs of Scorpiones and Tetrapulmonata (Chelicerata, Arachnida): evidence for homology and a single terrestrialisation event of a common arachnid ancestor. Scholtz G; Kamenz C Zoology (Jena); 2006; 109(1):2-13. PubMed ID: 16386884 [TBL] [Abstract][Full Text] [Related]
37. Phylogenomic data reveal three new families of poorly studied Solifugae (camel spiders). Kulkarni SS; Yamasaki T; Thi Hong Phung L; Karuaera N; Daniels SR; Gavish-Regev E; Sharma PP Mol Phylogenet Evol; 2024 Feb; 191():107989. PubMed ID: 38072141 [TBL] [Abstract][Full Text] [Related]
38. Postembryonic development of astrocyte-like glia of the central complex in the grasshopper Schistocerca gregaria. Boyan G; Williams L; Götz S Cell Tissue Res; 2013 Mar; 351(3):361-72. PubMed ID: 23250573 [TBL] [Abstract][Full Text] [Related]
39. A plurality of morphological characters need not equate with phylogenetic accuracy: A rare genomic change refutes the placement of Solifugae and Pseudoscorpiones in Haplocnemata. Gainett G; Klementz BC; Setton EVW; Simian C; Iuri HA; Edgecombe GD; Peretti AV; Sharma PP Evol Dev; 2024 Jul; 26(4):e12467. PubMed ID: 38124251 [TBL] [Abstract][Full Text] [Related]
40. A common evolutionary origin for the ON- and OFF-edge motion detection pathways of the Drosophila visual system. Shinomiya K; Takemura SY; Rivlin PK; Plaza SM; Scheffer LK; Meinertzhagen IA Front Neural Circuits; 2015; 9():33. PubMed ID: 26217193 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]