BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 33383297)

  • 41. Protein Engineering in Ribosomally Synthesized and Post-translationally Modified Peptides (RiPPs).
    Do T; Link AJ
    Biochemistry; 2023 Jan; 62(2):201-209. PubMed ID: 35006671
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome Mining and Discovery of Imiditides, a Family of RiPPs with a Class-Defining Aspartimide Modification.
    Cao L; Do T; Zhu A; Duan J; Alam N; Link AJ
    J Am Chem Soc; 2023 Aug; 145(34):18834-18845. PubMed ID: 37595015
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure Prediction and Synthesis of Pyridine-Based Macrocyclic Peptide Natural Products.
    Hudson GA; Hooper AR; DiCaprio AJ; Sarlah D; Mitchell DA
    Org Lett; 2021 Jan; 23(2):253-256. PubMed ID: 32845158
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell-free biosynthesis and engineering of ribosomally synthesized lanthipeptides.
    Liu WQ; Ji X; Ba F; Zhang Y; Xu H; Huang S; Zheng X; Liu Y; Ling S; Jewett MC; Li J
    Nat Commun; 2024 May; 15(1):4336. PubMed ID: 38773100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent advances in the biosynthesis of ribosomally synthesized and posttranslationally modified peptides of fungal origin.
    Ozaki T; Minami A; Oikawa H
    J Antibiot (Tokyo); 2023 Jan; 76(1):3-13. PubMed ID: 36424516
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Advancements in the Application of Ribosomally Synthesized and Post-Translationally Modified Peptides (RiPPs).
    Han SW; Won HS
    Biomolecules; 2024 Apr; 14(4):. PubMed ID: 38672495
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Global Genome Mining Reveals the Distribution of Diverse Thioamidated RiPP Biosynthesis Gene Clusters.
    Malit JJL; Wu C; Liu LL; Qian PY
    Front Microbiol; 2021; 12():635389. PubMed ID: 33995295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome Mining and Discovery of Imiditides, a Novel Family of RiPPs with a Class-defining Aspartimide Modification.
    Cao L; Do T; Zhu AD; Alam N; Link AJ
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066262
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioinformatic mining for RiPP biosynthetic gene clusters in Bacteroidales reveals possible new subfamily architectures and novel natural products.
    Fernandez-Cantos MV; Garcia-Morena D; Yi Y; Liang L; Gómez-Vázquez E; Kuipers OP
    Front Microbiol; 2023; 14():1219272. PubMed ID: 37469430
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products.
    Li H; Ding W; Zhang Q
    RSC Chem Biol; 2024 Feb; 5(2):90-108. PubMed ID: 38333193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Aliphatic Ether Bond Formation Expands the Scope of Radical SAM Enzymes in Natural Product Biosynthesis.
    Clark KA; Bushin LB; Seyedsayamdost MR
    J Am Chem Soc; 2019 Jul; 141(27):10610-10615. PubMed ID: 31246011
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural investigation of ribosomally synthesized natural products by hypothetical structure enumeration and evaluation using tandem MS.
    Zhang Q; Ortega M; Shi Y; Wang H; Melby JO; Tang W; Mitchell DA; van der Donk WA
    Proc Natl Acad Sci U S A; 2014 Aug; 111(33):12031-6. PubMed ID: 25092299
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Novel approach in whole genome mining and transcriptome analysis reveal conserved RiPPs in Trichoderma spp.
    Vignolle GA; Mach RL; Mach-Aigner AR; Derntl C
    BMC Genomics; 2020 Mar; 21(1):258. PubMed ID: 32216757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Silent Biosynthetic Gene Cluster from a Methanotrophic Bacterium Potentiates Discovery of a Substrate Promiscuous Proteusin Cyclodehydratase.
    Nguyen NA; Cong Y; Hurrell RC; Arias N; Garg N; Puri AW; Schmidt EW; Agarwal V
    ACS Chem Biol; 2022 Jun; 17(6):1577-1585. PubMed ID: 35666841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automated genome mining of ribosomal peptide natural products.
    Mohimani H; Kersten RD; Liu WT; Wang M; Purvine SO; Wu S; Brewer HM; Pasa-Tolic L; Bandeira N; Moore BS; Pevzner PA; Dorrestein PC
    ACS Chem Biol; 2014 Jul; 9(7):1545-51. PubMed ID: 24802639
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new genome-mining tool redefines the lasso peptide biosynthetic landscape.
    Tietz JI; Schwalen CJ; Patel PS; Maxson T; Blair PM; Tai HC; Zakai UI; Mitchell DA
    Nat Chem Biol; 2017 May; 13(5):470-478. PubMed ID: 28244986
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome mining for ribosomally synthesized natural products.
    Velásquez JE; van der Donk WA
    Curr Opin Chem Biol; 2011 Feb; 15(1):11-21. PubMed ID: 21095156
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nocathioamides, Uncovered by a Tunable Metabologenomic Approach, Define a Novel Class of Chimeric Lanthipeptides.
    Saad H; Aziz S; Gehringer M; Kramer M; Straetener J; Berscheid A; Brötz-Oesterhelt H; Gross H
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16472-16479. PubMed ID: 33991039
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A systematic comparison of natural product potential, with an emphasis on RiPPs, by mining of bacteria of three large ecosystems.
    Yi Y; Liang L; de Jong A; Kuipers OP
    Genomics; 2024 Jul; 116(4):110880. PubMed ID: 38857812
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Investigations into PoyH, a promiscuous protease from polytheonamide biosynthesis.
    Helf MJ; Freeman MF; Piel J
    J Ind Microbiol Biotechnol; 2019 Mar; 46(3-4):551-563. PubMed ID: 30627933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.