These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33383328)

  • 1. Optimal Deep Belief Network with Opposition based Pity Beetle Algorithm for Lung Cancer Classification: A DBNOPBA Approach.
    Priya MMMA; Jawhar DSJ; Geisa DJM
    Comput Methods Programs Biomed; 2021 Feb; 199():105902. PubMed ID: 33383328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting lung nodule malignancies by combining deep convolutional neural network and handcrafted features.
    Li S; Xu P; Li B; Chen L; Zhou Z; Hao H; Duan Y; Folkert M; Ma J; Huang S; Jiang S; Wang J
    Phys Med Biol; 2019 Sep; 64(17):175012. PubMed ID: 31307017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic lung nodule classification with belief decision trees.
    Zinovev D; Feigenbaum J; Furst J; Raicu D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4493-8. PubMed ID: 22255337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis.
    Sun W; Zheng B; Qian W
    Comput Biol Med; 2017 Oct; 89():530-539. PubMed ID: 28473055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep fusion of gray level co-occurrence matrices for lung nodule classification.
    Saihood A; Karshenas H; Nilchi ARN
    PLoS One; 2022; 17(9):e0274516. PubMed ID: 36174073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of pulmonary nodules in computed tomography using a regression neural network approach and its application to the Lung Image Database Consortium and Image Database Resource Initiative dataset.
    Messay T; Hardie RC; Tuinstra TR
    Med Image Anal; 2015 May; 22(1):48-62. PubMed ID: 25791434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images.
    Houssein EH; Emam MM; Ali AA
    Neural Comput Appl; 2021; 33(24):16899-16919. PubMed ID: 34248291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Reconstruction Algorithms on CT Radiomic Features of Pulmonary Tumors: Analysis of Intra- and Inter-Reader Variability and Inter-Reconstruction Algorithm Variability.
    Kim H; Park CM; Lee M; Park SJ; Song YS; Lee JH; Hwang EJ; Goo JM
    PLoS One; 2016; 11(10):e0164924. PubMed ID: 27741289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Texture feature extraction of gray-level co-occurrence matrix for metastatic cancer cells using scanned laser pico-projection images.
    Lian MJ; Huang CL
    Lasers Med Sci; 2019 Sep; 34(7):1503-1508. PubMed ID: 30043142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung Cancer Detection using Probabilistic Neural Network with modified Crow-Search Algorithm.
    S R SC; Rajaguru H
    Asian Pac J Cancer Prev; 2019 Jul; 20(7):2159-2166. PubMed ID: 31350980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convolutional neural network-based PSO for lung nodule false positive reduction on CT images.
    da Silva GLF; Valente TLA; Silva AC; de Paiva AC; Gattass M
    Comput Methods Programs Biomed; 2018 Aug; 162():109-118. PubMed ID: 29903476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-label spacecraft electrical signal classification method based on DBN and random forest.
    Li K; Yu N; Li P; Song S; Wu Y; Li Y; Liu M
    PLoS One; 2017; 12(5):e0176614. PubMed ID: 28486479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Hybrid Feature Extraction Model for Classification on Pulmonary Nodules.
    Kailasam SP; Sathik MM
    Asian Pac J Cancer Prev; 2019 Feb; 20(2):457-468. PubMed ID: 30803208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved tangent search algorithm.
    Pachung P; Bansal JC
    MethodsX; 2022; 9():101839. PubMed ID: 36160108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective staging of fibrosis by the selected texture features of liver: Which one is better, CT or MR imaging?
    Zhang X; Gao X; Liu BJ; Ma K; Yan W; Liling L; Yuhong H; Fujita H
    Comput Med Imaging Graph; 2015 Dec; 46 Pt 2():227-36. PubMed ID: 26455963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a personalized training system using the Lung Image Database Consortium and Image Database resource Initiative Database.
    Lin H; Wang W; Luo J; Yang X
    Acad Radiol; 2014 Dec; 21(12):1614-22. PubMed ID: 25442354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adaptive morphology based segmentation technique for lung nodule detection in thoracic CT image.
    Halder A; Chatterjee S; Dey D; Kole S; Munshi S
    Comput Methods Programs Biomed; 2020 Dec; 197():105720. PubMed ID: 32877818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High resolution multidetector CT-aided tissue analysis and quantification of lung fibrosis.
    Zavaletta VA; Bartholmai BJ; Robb RA
    Acad Radiol; 2007 Jul; 14(7):772-87. PubMed ID: 17574128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT.
    Korfiatis P; Kalogeropoulou C; Karahaliou A; Kazantzi A; Skiadopoulos S; Costaridou L
    Med Phys; 2008 Dec; 35(12):5290-302. PubMed ID: 19175088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Texture classification in lung CT using local binary patterns.
    Sørensen L; Shaker SB; de Bruijne M
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 1):934-41. PubMed ID: 18979835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.