These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 33383526)

  • 21. Combining STDP and binary networks for reinforcement learning from images and sparse rewards.
    Chevtchenko SF; Ludermir TB
    Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Humans perseverate on punishment avoidance goals in multigoal reinforcement learning.
    Sharp PB; Russek EM; Huys QJM; Dolan RJ; Eldar E
    Elife; 2022 Feb; 11():. PubMed ID: 35199640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of trial order on learning from reward vs. punishment in a probabilistic categorization task: experimental and computational analyses.
    Moustafa AA; Gluck MA; Herzallah MM; Myers CE
    Front Behav Neurosci; 2015; 9():153. PubMed ID: 26257616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsic Rewards for Maintenance, Approach, Avoidance, and Achievement Goal Types.
    Dhakan P; Merrick K; Rañó I; Siddique N
    Front Neurorobot; 2018; 12():63. PubMed ID: 30356820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. REWARD AND PUNISHMENT ASSOCIATED WITH THE SAME GOAL RESPONSE: A FACTOR IN THE LEARNING OF MOTIVES.
    MARTIN B
    Psychol Bull; 1963 Sep; 60():441-51. PubMed ID: 14051061
    [No Abstract]   [Full Text] [Related]  

  • 26. Dissociable feedback valence effects on frontal midline theta during reward gain versus threat avoidance learning.
    Stolz C; Pickering AD; Mueller EM
    Psychophysiology; 2023 May; 60(5):e14235. PubMed ID: 36529988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is all motivation good for learning? Dissociable influences of approach and avoidance motivation in declarative memory.
    Murty VP; LaBar KS; Hamilton DA; Adcock RA
    Learn Mem; 2011; 18(11):712-7. PubMed ID: 22021253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.
    Krigolson OE; Hassall CD; Handy TC
    J Cogn Neurosci; 2014 Mar; 26(3):635-44. PubMed ID: 24168216
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct medial temporal networks encode surprise during motivation by reward versus punishment.
    Murty VP; LaBar KS; Adcock RA
    Neurobiol Learn Mem; 2016 Oct; 134 Pt A(Pt A):55-64. PubMed ID: 26854903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Discovering diverse solutions in deep reinforcement learning by maximizing state-action-based mutual information.
    Osa T; Tangkaratt V; Sugiyama M
    Neural Netw; 2022 Aug; 152():90-104. PubMed ID: 35523085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning.
    Blakeman S; Mareschal D
    Neural Netw; 2022 Jun; 150():408-421. PubMed ID: 35358888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predictive hierarchical reinforcement learning for path-efficient mapless navigation with moving target.
    Li H; Luo B; Song W; Yang C
    Neural Netw; 2023 Aug; 165():677-688. PubMed ID: 37385022
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A deep reinforcement learning algorithm framework for solving multi-objective traveling salesman problem based on feature transformation.
    Zhao S; Gu S
    Neural Netw; 2024 Aug; 176():106359. PubMed ID: 38733797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Genetically Defined Compartmentalized Striatal Direct Pathway for Negative Reinforcement.
    Xiao X; Deng H; Furlan A; Yang T; Zhang X; Hwang GR; Tucciarone J; Wu P; He M; Palaniswamy R; Ramakrishnan C; Ritola K; Hantman A; Deisseroth K; Osten P; Huang ZJ; Li B
    Cell; 2020 Oct; 183(1):211-227.e20. PubMed ID: 32937106
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigating navigation strategies in the Morris Water Maze through deep reinforcement learning.
    Liu A; Borisyuk A
    Neural Netw; 2024 Apr; 172():106050. PubMed ID: 38232429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Punishment and Reward Backfill for Deep Q-Learning.
    Bonyadi MR; Wang R; Ziaei M
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):8086-8093. PubMed ID: 35041613
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving Robot Motor Learning with Negatively Valenced Reinforcement Signals.
    Navarro-Guerrero N; Lowe RJ; Wermter S
    Front Neurorobot; 2017; 11():10. PubMed ID: 28420976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.