These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 33383526)

  • 41. A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task.
    Suri RE; Schultz W
    Neuroscience; 1999; 91(3):871-90. PubMed ID: 10391468
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation.
    Kato A; Morita K
    PLoS Comput Biol; 2016 Oct; 12(10):e1005145. PubMed ID: 27736881
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modular inverse reinforcement learning for visuomotor behavior.
    Rothkopf CA; Ballard DH
    Biol Cybern; 2013 Aug; 107(4):477-90. PubMed ID: 23832417
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Goal-proximity decision-making.
    Veksler VD; Gray WD; Schoelles MJ
    Cogn Sci; 2013; 37(4):757-74. PubMed ID: 23551486
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lessons from reinforcement learning for biological representations of space.
    Muryy A; Siddharth N; Nardelli N; Glennerster A; Torr PHS
    Vision Res; 2020 Sep; 174():79-93. PubMed ID: 32683096
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
    Sans-Muntadas A; Duarte JE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3516-20. PubMed ID: 25570749
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Inter-module credit assignment in modular reinforcement learning.
    Samejima K; Doya K; Kawato M
    Neural Netw; 2003 Sep; 16(7):985-94. PubMed ID: 14692633
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Weak Human Preference Supervision for Deep Reinforcement Learning.
    Cao Z; Wong K; Lin CT
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5369-5378. PubMed ID: 34101604
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Confirmatory reinforcement learning changes with age during adolescence.
    Chierchia G; Soukupová M; Kilford EJ; Griffin C; Leung J; Palminteri S; Blakemore SJ
    Dev Sci; 2023 May; 26(3):e13330. PubMed ID: 36194156
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Stage-Wise Learning of Reaching Using Little Prior Knowledge.
    de La Bourdonnaye F; Teulière C; Triesch J; Chateau T
    Front Robot AI; 2018; 5():110. PubMed ID: 33500989
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The Computational Development of Reinforcement Learning during Adolescence.
    Palminteri S; Kilford EJ; Coricelli G; Blakemore SJ
    PLoS Comput Biol; 2016 Jun; 12(6):e1004953. PubMed ID: 27322574
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual-task performance is differentially modulated by rewards and punishments.
    Yildiz A; Chmielewski W; Beste C
    Behav Brain Res; 2013 Aug; 250():304-7. PubMed ID: 23680164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Velocity range-based reward shaping technique for effective map-less navigation with LiDAR sensor and deep reinforcement learning.
    Lee H; Jeong J
    Front Neurorobot; 2023; 17():1210442. PubMed ID: 37744086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Spatiotemporal dynamics of reward and punishment effects induced by associative learning.
    Wang H; Kleffner K; Carolan PL; Liotti M
    PLoS One; 2018; 13(11):e0199847. PubMed ID: 30475805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deep Reinforcement Learning-Based Automatic Exploration for Navigation in Unknown Environment.
    Li H; Zhang Q; Zhao D
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):2064-2076. PubMed ID: 31398138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Altered Reinforcement Learning from Reward and Punishment in Anorexia Nervosa: Evidence from Computational Modeling.
    Wierenga CE; Reilly E; Bischoff-Grethe A; Kaye WH; Brown GG
    J Int Neuropsychol Soc; 2022 Nov; 28(10):1003-1015. PubMed ID: 34839845
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dual-Arm Robot Trajectory Planning Based on Deep Reinforcement Learning under Complex Environment.
    Tang W; Cheng C; Ai H; Chen L
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457870
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Associative Learning of Stimuli Paired and Unpaired With Reinforcement: Evaluating Evidence From Maggots, Flies, Bees, and Rats.
    Schleyer M; Fendt M; Schuller S; Gerber B
    Front Psychol; 2018; 9():1494. PubMed ID: 30197613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.