These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33383540)

  • 21. Multibubble Sonochemistry and Sonoluminescence at 100 kHz: The Missing Link between Low- and High-Frequency Ultrasound.
    Ji R; Pflieger R; Virot M; Nikitenko SI
    J Phys Chem B; 2018 Jul; 122(27):6989-6994. PubMed ID: 29889527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sonochemical free radical formation in aqueous solutions.
    Riesz P; Christman CL
    Fed Proc; 1986 Sep; 45(10):2485-92. PubMed ID: 3017767
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical study of single-bubble sonochemistry.
    Yasui K; Tuziuti T; Sivakumar M; Iida Y
    J Chem Phys; 2005 Jun; 122(22):224706. PubMed ID: 15974702
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sonochemical conversion of CO
    Islam MH; Burheim OS; Hihn JY; Pollet BG
    Ultrason Sonochem; 2021 May; 73():105474. PubMed ID: 33578279
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A statistical thermodynamic approach to sonochemical reactions.
    David B; Boldo P
    Ultrason Sonochem; 2008 Jan; 15(1):78-88. PubMed ID: 17419086
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of dissolved-air concentration on spatial distribution of bubbles for sonochemistry.
    Tuziuti T; Yasui K; Sivakumar M; Iida Y
    Ultrasonics; 2006 Dec; 44 Suppl 1():e357-61. PubMed ID: 16780909
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radical production inside an acoustically driven microbubble.
    Stricker L; Lohse D
    Ultrason Sonochem; 2014 Jan; 21(1):336-45. PubMed ID: 23962695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents.
    Yamashita T; Ando K
    Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bubbles in an acoustic field: an overview.
    Ashokkumar M; Lee J; Kentish S; Grieser F
    Ultrason Sonochem; 2007 Apr; 14(4):470-5. PubMed ID: 17234444
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sonochemical degradation of naphthol blue black in water: Effect of operating parameters.
    Ferkous H; Hamdaoui O; Merouani S
    Ultrason Sonochem; 2015 Sep; 26():40-47. PubMed ID: 25843901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water.
    Ferkous H; Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Sep; 26():30-39. PubMed ID: 25753313
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Some aspects of the design of sonochemical reactors.
    Gogate PR; Wilhelm AM; Pandit AB
    Ultrason Sonochem; 2003 Oct; 10(6):325-30. PubMed ID: 12927607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms for sonochemical oxidation of nitrogen.
    Qureishy T; Løyland S; Jørgensen SJ; Færgestad EM; Norby T; Uggerud E
    Phys Chem Chem Phys; 2022 Jun; 24(25):15357-15364. PubMed ID: 35703372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production and dispersion of free radicals from transient cavitation Bubbles: An integrated numerical scheme and applications.
    Peng K; Qin FGF; Jiang R; Qu W; Wang Q
    Ultrason Sonochem; 2022 Aug; 88():106067. PubMed ID: 35751936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic cavitation at low gas pressures in PZT-based ultrasonic systems.
    Mondal J; Li W; Rezk AR; Yeo LY; Lakkaraju R; Ghosh P; Ashokkumar M
    Ultrason Sonochem; 2021 May; 73():105493. PubMed ID: 33609993
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sonochemical and sonoelectrochemical production of hydrogen.
    Islam MH; Burheim OS; Pollet BG
    Ultrason Sonochem; 2019 Mar; 51():533-555. PubMed ID: 30442455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimum bubble temperature for the sonochemical production of oxidants.
    Yasui K; Tuziuti T; Iida Y
    Ultrasonics; 2004 Apr; 42(1-9):579-84. PubMed ID: 15047350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of dissolve gas concentration in the initial growth stage of multi cavitation bubbles. Differences between vacuum degassing and ultrasound degassing.
    Yanagida H
    Ultrason Sonochem; 2008 Apr; 15(4):492-496. PubMed ID: 17681864
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of ultrasonic frequency on H2O2 sonochemical formation rate in aqueous nitric acid solutions in the presence of oxygen.
    Dalodière E; Virot M; Moisy P; Nikitenko SI
    Ultrason Sonochem; 2016 Mar; 29():198-204. PubMed ID: 26584999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.