These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 33383685)

  • 1. A Laterally Vibrating Lithium Niobate MEMS Resonator Array Operating at 500 °C in Air.
    Eisner SR; Chapin CA; Lu R; Yang Y; Gong S; Senesky DG
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lithium Niobate Phononic Crystals for Tailoring Performance of RF Laterally Vibrating Devices.
    Lu R; Manzaneque T; Yang Y; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):934-944. PubMed ID: 29856710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipation Analysis Methods and Q-Enhancement Strategies in Piezoelectric MEMS Laterally Vibrating Resonators: A Review.
    Tu C; Lee JE; Zhang XS
    Sensors (Basel); 2020 Sep; 20(17):. PubMed ID: 32887409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of a Solid-State Tuning Behavior in Lithium Niobate.
    Branch DW; Jensen DS; Nordquist CD; Siddiqui A; Douglas JK; Eichenfield M; Friedmann TA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):365-373. PubMed ID: 31567077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Figure-of-Merit X-Cut Lithium Niobate MEMS Resonators Operating Around 50 MHz for Large Passive Voltage Amplification in Radio Frequency Applications.
    Colombo L; Kochhar A; Vidal-Alvarez G; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1392-1402. PubMed ID: 32054573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature Characteristics of a Contour Mode MEMS AlN Piezoelectric Ring Resonator on SOI Substrate.
    Fei S; Ren H
    Micromachines (Basel); 2021 Jan; 12(2):. PubMed ID: 33572931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Near Spurious-Free Thickness Shear Mode Lithium Niobate Resonator for Piezoelectric Power Conversion.
    Nguyen K; Chulukhadze V; Stolt E; Braun W; Segovia-Fernandez J; Chakraborty S; Rivas J; Lu R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Nov; 70(11):1536-1543. PubMed ID: 37549088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO
    Liu Y; Liu K; Li J; Li Y; Wu T
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technique and Circuit for Contactless Readout of Piezoelectric MEMS Resonator Sensors.
    Baù M; Ferrari M; Begum H; Ali A; Lee JE; Ferrari V
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32575658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Wideband Oscillator Exploiting Multiple Resonances in Lithium Niobate MEMS Resonator.
    Kourani A; Lu R; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1854-1866. PubMed ID: 32324549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hetero Acoustic Layer Surface Acoustic Wave Resonator Composed of LiNbO
    Guo Y; Kadota M; Tanaka S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2024 Jan; 71(1):182-190. PubMed ID: 38010932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Analytical Temperature-Dependent Design Model for Contour-Mode MEMS Resonators and Oscillators Verified by Measurements.
    Stegner J; Gropp S; Podoskin D; Stehr U; Hoffmann M; Hein MA
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29973571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Study on the Effects of Bottom Electrode Designs on Aluminum Nitride Contour-Mode Resonators.
    Jung SI; Ryu C; Piazza G; Kim HJ
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31703310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Finite Element Analysis and Characterization of Quasi-Surface Acoustic Wave Resonators.
    Chen W; Zhang L; Yang S; Jia W; Zhang S; Gu Y; Lou L; Wu G
    Micromachines (Basel); 2021 Sep; 12(9):. PubMed ID: 34577761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Switchable High-Performance RF-MEMS Resonator with Flexible Frequency Generations.
    Chen Z; Kan X; Yuan Q; Wang T; Yang J; Yang F
    Sci Rep; 2020 Mar; 10(1):4795. PubMed ID: 32179843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Electromechanical Coupling Coefficient of a Laterally Excited Bulk Wave Resonator with Composite Piezoelectric Film.
    Xie Y; Liu Y; Liu J; Wang L; Liu W; Soon BW; Cai Y; Sun C
    Micromachines (Basel); 2022 Apr; 13(4):. PubMed ID: 35457945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lateral Extensional Mode Piezoelectric ZnO-on-Nickel RF MEMS Resonators for Back-End-of-Line Integration.
    Zaman A; Alsolami A; Wei M; Rivera I; Baghelani M; Wang J
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Super-high-frequency two-port AlN contour-mode resonators for RF applications.
    Rinaldi M; Zuniga C; Zuo C; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):38-45. PubMed ID: 20040424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Athermal lithium niobate microresonator.
    Ling J; He Y; Luo R; Li M; Liang H; Lin Q
    Opt Express; 2020 Jul; 28(15):21682-21691. PubMed ID: 32752441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super-High-Frequency Bulk Acoustic Resonators Based on Aluminum Scandium Nitride for Wideband Applications.
    Dou W; Zhou C; Qin R; Yang Y; Guo H; Mu Z; Yu W
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.