These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 33383777)

  • 1. Brachialis Pulse Wave Measurements with Ultra-Wide Band and Continuous Wave Radar, Photoplethysmography and Ultrasonic Doppler Sensors.
    Hellbrück H; Ardelt G; Wegerich P; Gehring H
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of pulse transit time using ultra-wideband radar.
    Cho HS; Park YJ
    Technol Health Care; 2021; 29(5):859-868. PubMed ID: 33427703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of Arterial Pulse Wave Velocity from Doppler Radar Measurements: a Feasibility Study.
    Vasireddy R; Goette J; Jacomet M; Vogt A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5460-5464. PubMed ID: 31947091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulse pressure monitoring through non-contact cardiac motion detection using 2.45 GHz microwave Doppler radar.
    Singh A; Lubecke V; Boric-Lubecke O
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4336-9. PubMed ID: 22255299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new principle of pulse detection based on terahertz wave plethysmography.
    Rong Y; Theofanopoulos PC; Trichopoulos GC; Bliss DW
    Sci Rep; 2022 Apr; 12(1):6347. PubMed ID: 35428772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards development of a mobile RF Doppler sensor for continuous heart rate variability and blood pressure monitoring.
    Insoo Kim ; Bhagat YA
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3390-3393. PubMed ID: 28269031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remote Estimation of Blood Pressure Using Millimeter-Wave Frequency-Modulated Continuous-Wave Radar.
    Singh L; You S; Jeong BJ; Koo C; Kim Y
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TRCCBP: Transformer Network for Radar-Based Contactless Continuous Blood Pressure Monitoring.
    Jiang X; Zhang J; Mu W; Wang K; Li L; Zhang L
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood Pressure Estimation Using On-body Continuous Wave Radar and Photoplethysmogram in Various Posture and Exercise Conditions.
    Pour Ebrahim M; Heydari F; Wu T; Walker K; Joe K; Redoute JM; Yuce MR
    Sci Rep; 2019 Nov; 9(1):16346. PubMed ID: 31705001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodal Finger Pulse Wave Sensing: Comparison of Forcecardiography and Photoplethysmography Sensors.
    Andreozzi E; Sabbadini R; Centracchio J; Bifulco P; Irace A; Breglio G; Riccio M
    Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Millimeter-Waves in the Distance Measurement Accuracy of an FMCW Radar Sensor.
    Bhutani A; Marahrens S; Gehringer M; Göttel B; Pauli M; Zwick T
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31547328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Method for Breath Detection via Stepped-Frequency Continuous Wave Ultra-Wideband (SFCW UWB) Radars Based on Operational Bandwidth Segmentation.
    Lv H; Jiao T; Zhang Y; Liang F; Qi F; Wang J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30423841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Waveform Morphology Comparison in Wearable Blood Pressure Sensors.
    Gomes E; Naima R; Liao C; Shay O
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2902-2905. PubMed ID: 36086617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-contact physiological signal detection using continuous wave Doppler radar.
    Qiao D; He T; Hu B; Li Y
    Biomed Mater Eng; 2014; 24(1):993-1000. PubMed ID: 24211989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cuffless blood pressure estimation from the carotid pulse arrival time using continuous wave radar.
    Buxi D; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5704-7. PubMed ID: 26737587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal Central Frequency for Non-Contact Vital Sign Detection Using Monocycle UWB Radar.
    Rittiplang A; Phasukkit P; Orankitanun T
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32455660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue optical perfusion pressure: a simplified, more reliable, and faster assessment of pedal microcirculation in peripheral artery disease.
    Horstick G; Messner L; Grundmann A; Yalcin S; Weisser G; Espinola-Klein C
    Am J Physiol Heart Circ Physiol; 2020 Dec; 319(6):H1208-H1220. PubMed ID: 32946260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent UWB Radar-on-Chip for In-Body Measurement of Cardiovascular Dynamics.
    Lauteslager T; Tommer M; Lande TS; Constandinou TG
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):814-824. PubMed ID: 31199270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-Contact Measurement of Human Respiration and Heartbeat Using W-band Doppler Radar Sensor.
    Kim H; Jeong J
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ultrawideband radar based pulse sensor for arterial stiffness measurement.
    Tao TH; Hu SJ; Peng JH; Kuo SC
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1679-82. PubMed ID: 18002297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.