These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
301 related articles for article (PubMed ID: 33383795)
21. In vitro cartilage tissue engineering using adipose-derived extracellular matrix scaffolds seeded with adipose-derived stem cells. Choi JS; Kim BS; Kim JD; Choi YC; Lee HY; Cho YW Tissue Eng Part A; 2012 Jan; 18(1-2):80-92. PubMed ID: 21905881 [TBL] [Abstract][Full Text] [Related]
22. Human trabecular meshwork cell behavior is influenced by collagen scaffold pore architecture and glycosaminoglycan composition. Osmond MJ; Krebs MD; Pantcheva MB Biotechnol Bioeng; 2020 Oct; 117(10):3150-3159. PubMed ID: 32589791 [TBL] [Abstract][Full Text] [Related]
23. Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Bean AC; Tuan RS Biomed Mater; 2015 Jan; 10(1):015018. PubMed ID: 25634427 [TBL] [Abstract][Full Text] [Related]
24. Evolving insights in cell-matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate. Walters NJ; Gentleman E Acta Biomater; 2015 Jan; 11():3-16. PubMed ID: 25266503 [TBL] [Abstract][Full Text] [Related]
25. Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(ɛ-Caprolactone) Scaffolds. Silva JC; Moura CS; Borrecho G; de Matos APA; da Silva CL; Cabral JMS; Bártolo PJ; Linhardt RJ; Ferreira FC Biotechnol J; 2020 Feb; 15(2):e1900078. PubMed ID: 31560160 [TBL] [Abstract][Full Text] [Related]
26. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Kennedy KM; Bhaw-Luximon A; Jhurry D Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142 [TBL] [Abstract][Full Text] [Related]
27. Dynamic compression modulates chondrocyte proliferation and matrix biosynthesis in chitosan/gelatin scaffolds. Wang PY; Chow HH; Lai JY; Liu HL; Tsai WB J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):143-52. PubMed ID: 19399846 [TBL] [Abstract][Full Text] [Related]
28. Functionalization of biomaterial surfaces using artificial extracellular matrices. Bierbaum S; Hintze V; Scharnweber D Biomatter; 2012; 2(3):132-41. PubMed ID: 23507864 [TBL] [Abstract][Full Text] [Related]
29. Additive manufacturing of an elastic poly(ester)urethane for cartilage tissue engineering. Camarero-Espinosa S; Calore A; Wilbers A; Harings J; Moroni L Acta Biomater; 2020 Jan; 102():192-204. PubMed ID: 31778830 [TBL] [Abstract][Full Text] [Related]
31. Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Xing Q; Yates K; Tahtinen M; Shearier E; Qian Z; Zhao F Tissue Eng Part C Methods; 2015 Jan; 21(1):77-87. PubMed ID: 24866751 [TBL] [Abstract][Full Text] [Related]
32. Glycosaminoglycans enhance osteoblast differentiation of bone marrow derived human mesenchymal stem cells. Mathews S; Mathew SA; Gupta PK; Bhonde R; Totey S J Tissue Eng Regen Med; 2014 Feb; 8(2):143-52. PubMed ID: 22499338 [TBL] [Abstract][Full Text] [Related]
33. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. Jin G; He R; Sha B; Li W; Qing H; Teng R; Xu F Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():995-1005. PubMed ID: 30184829 [TBL] [Abstract][Full Text] [Related]
34. The use of bioinspired alterations in the glycosaminoglycan content of collagen-GAG scaffolds to regulate cell activity. Hortensius RA; Harley BA Biomaterials; 2013 Oct; 34(31):7645-52. PubMed ID: 23871542 [TBL] [Abstract][Full Text] [Related]
35. Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs. Hess R; Jaeschke A; Neubert H; Hintze V; Moeller S; Schnabelrauch M; Wiesmann HP; Hart DA; Scharnweber D Biomaterials; 2012 Dec; 33(35):8975-85. PubMed ID: 22995709 [TBL] [Abstract][Full Text] [Related]
36. Decellularized extracellular matrix: New promising and challenging biomaterials for regenerative medicine. Brown M; Li J; Moraes C; Tabrizian M; Li-Jessen NYK Biomaterials; 2022 Oct; 289():121786. PubMed ID: 36116171 [TBL] [Abstract][Full Text] [Related]
37. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641 [TBL] [Abstract][Full Text] [Related]
38. Combinatorial biomatrix/cell-based therapies for restoration of host tissue architecture and function. Cantu DA; Kao WJ Adv Healthc Mater; 2013 Dec; 2(12):1544-63. PubMed ID: 23828863 [TBL] [Abstract][Full Text] [Related]
39. Heart valve tissue-derived hydrogels: Preparation and characterization of mitral valve chordae, aortic valve, and mitral valve gels. Wu J; Brazile B; McMahan SR; Liao J; Hong Y J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1732-1740. PubMed ID: 30419146 [TBL] [Abstract][Full Text] [Related]
40. Influence of extracellular cues of hydrogel biomaterials on stem cell fate. Barnett H; Shevchuk M; Peppas NA; Caldorera-Moore M J Biomater Sci Polym Ed; 2022 Jul; 33(10):1324-1347. PubMed ID: 35297325 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]