These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 33383804)
1. Determination of Body Parts in Holstein Friesian Cows Comparing Neural Networks and k Nearest Neighbour Classification. Salau J; Haas JH; Junge W; Thaller G Animals (Basel); 2020 Dec; 11(1):. PubMed ID: 33383804 [TBL] [Abstract][Full Text] [Related]
2. Live animal assessments of rump fat and muscle score in Angus cows and steers using 3-dimensional imaging. McPhee MJ; Walmsley BJ; Skinner B; Littler B; Siddell JP; Cafe LM; Wilkins JF; Oddy VH; Alempijevic A J Anim Sci; 2017 Apr; 95(4):1847-1857. PubMed ID: 28464097 [TBL] [Abstract][Full Text] [Related]
3. Instance Segmentation with Mask R-CNN Applied to Loose-Housed Dairy Cows in a Multi-Camera Setting. Salau J; Krieter J Animals (Basel); 2020 Dec; 10(12):. PubMed ID: 33333993 [TBL] [Abstract][Full Text] [Related]
4. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera. Spoliansky R; Edan Y; Parmet Y; Halachmi I J Dairy Sci; 2016 Sep; 99(9):7714-7725. PubMed ID: 27320661 [TBL] [Abstract][Full Text] [Related]
5. AVNM: A Voting based Novel Mathematical Rule for Image Classification. Vidyarthi A; Mittal N Comput Methods Programs Biomed; 2016 Dec; 137():195-201. PubMed ID: 28110724 [TBL] [Abstract][Full Text] [Related]
6. Developing a multi-Kinect-system for monitoring in dairy cows: object recognition and surface analysis using wavelets. Salau J; Haas JH; Thaller G; Leisen M; Junge W Animal; 2016 Sep; 10(9):1513-24. PubMed ID: 26837672 [TBL] [Abstract][Full Text] [Related]
7. Machine-Learning Techniques Can Enhance Dairy Cow Estrus Detection Using Location and Acceleration Data. Wang J; Bell M; Liu X; Liu G Animals (Basel); 2020 Jul; 10(7):. PubMed ID: 32650526 [TBL] [Abstract][Full Text] [Related]
8. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Uddin S; Haque I; Lu H; Moni MA; Gide E Sci Rep; 2022 Apr; 12(1):6256. PubMed ID: 35428863 [TBL] [Abstract][Full Text] [Related]
9. Comparison of three arterial pulse waveform classification techniques. Allen J; Murray A J Med Eng Technol; 1996; 20(3):109-14. PubMed ID: 8877751 [TBL] [Abstract][Full Text] [Related]
10. Automated identification of Monogeneans using digital image processing and K-nearest neighbour approaches. Yousef Kalafi E; Tan WB; Town C; Dhillon SK BMC Bioinformatics; 2016 Dec; 17(Suppl 19):511. PubMed ID: 28155722 [TBL] [Abstract][Full Text] [Related]
11. Love thy neighbour: automatic animal behavioural classification of acceleration data using the K-nearest neighbour algorithm. Bidder OR; Campbell HA; Gómez-Laich A; Urgé P; Walker J; Cai Y; Gao L; Quintana F; Wilson RP PLoS One; 2014; 9(2):e88609. PubMed ID: 24586354 [TBL] [Abstract][Full Text] [Related]
12. Real-Time Classification of Patients with Balance Disorders vs. Normal Subjects Using a Low-Cost Small Wireless Wearable Gait Sensor. Nukala BT; Nakano T; Rodriguez A; Tsay J; Lopez J; Nguyen TQ; Zupancic S; Lie DY Biosensors (Basel); 2016 Nov; 6(4):. PubMed ID: 27916817 [TBL] [Abstract][Full Text] [Related]
13. A comparison of machine learning and logistic regression in modelling the association of body condition score and submission rate. Bates AJ; Saldias B Prev Vet Med; 2019 Nov; 171():104765. PubMed ID: 31499454 [TBL] [Abstract][Full Text] [Related]
14. Handwritten Digit Recognition Using Lee Y Neural Comput; 1991; 3(3):440-449. PubMed ID: 31167319 [TBL] [Abstract][Full Text] [Related]
15. An Experimental Analysis of Attack Classification Using Machine Learning in IoT Networks. Churcher A; Ullah R; Ahmad J; Ur Rehman S; Masood F; Gogate M; Alqahtani F; Nour B; Buchanan WJ Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435202 [TBL] [Abstract][Full Text] [Related]
16. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion. Nath A; Subbiah K Comput Biol Chem; 2015 Dec; 59 Pt A():101-10. PubMed ID: 26433483 [TBL] [Abstract][Full Text] [Related]
17. Predicting bovine tuberculosis status of dairy cows from mid-infrared spectral data of milk using deep learning. Denholm SJ; Brand W; Mitchell AP; Wells AT; Krzyzelewski T; Smith SL; Wall E; Coffey MP J Dairy Sci; 2020 Oct; 103(10):9355-9367. PubMed ID: 32828515 [TBL] [Abstract][Full Text] [Related]
18. Automatic monitoring system for individual dairy cows based on a deep learning framework that provides identification via body parts and estimation of body condition score. Yukun S; Pengju H; Yujie W; Ziqi C; Yang L; Baisheng D; Runze L; Yonggen Z J Dairy Sci; 2019 Nov; 102(11):10140-10151. PubMed ID: 31521348 [TBL] [Abstract][Full Text] [Related]
19. Large scale biomedical texts classification: a kNN and an ESA-based approaches. Dramé K; Mougin F; Diallo G J Biomed Semantics; 2016 Jun; 7():40. PubMed ID: 27312781 [TBL] [Abstract][Full Text] [Related]
20. Classification of K-Pop Dance Movements Based on Skeleton Information Obtained by a Kinect Sensor. Kim D; Kim DH; Kwak KC Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]