These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 33383831)

  • 1. Active and Passive Electro-Optical Sensors for Health Assessment in Food Crops.
    Fahey T; Pham H; Gardi A; Sabatini R; Stefanelli D; Goodwin I; Lamb DW
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comprehensive Review of LiDAR Applications in Crop Management for Precision Agriculture.
    Farhan SM; Yin J; Chen Z; Memon MS
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based prediction of plant height and crown area of vegetable crops using LiDAR point cloud.
    J R; Nidamanuri RR
    Sci Rep; 2024 Jun; 14(1):14903. PubMed ID: 38942825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping.
    Guo Q; Wu F; Pang S; Zhao X; Chen L; Liu J; Xue B; Xu G; Li L; Jing H; Chu C
    Sci China Life Sci; 2018 Mar; 61(3):328-339. PubMed ID: 28616808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Detection to Protection: The Role of Optical Sensors, Robots, and Artificial Intelligence in Modern Plant Disease Management.
    Mahlein AK; Arnal Barbedo JG; Chiang KS; Del Ponte EM; Bock CH
    Phytopathology; 2024 Aug; 114(8):1733-1741. PubMed ID: 38810274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review.
    Berger K; Machwitz M; Kycko M; Kefauver SC; Van Wittenberghe S; Gerhards M; Verrelst J; Atzberger C; van der Tol C; Damm A; Rascher U; Herrmann I; Paz VS; Fahrner S; Pieruschka R; Prikaziuk E; Buchaillot ML; Halabuk A; Celesti M; Koren G; Gormus ET; Rossini M; Foerster M; Siegmann B; Abdelbaki A; Tagliabue G; Hank T; Darvishzadeh R; Aasen H; Garcia M; Pôças I; Bandopadhyay S; Sulis M; Tomelleri E; Rozenstein O; Filchev L; Stancile G; Schlerf M
    Remote Sens Environ; 2022 Oct; 280():113198. PubMed ID: 36090616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping.
    Nguyen C; Sagan V; Bhadra S; Moose S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Comparison of precision in retrieving soybean leaf area index based on multi-source remote sensing data].
    Gao L; Li CC; Wang BS; Yang Gui-jun ; Wang L; Fu K
    Ying Yong Sheng Tai Xue Bao; 2016 Jan; 27(1):191-200. PubMed ID: 27228609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant Disease Detection by Imaging Sensors - Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping.
    Mahlein AK
    Plant Dis; 2016 Feb; 100(2):241-251. PubMed ID: 30694129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remote Sensing of Diseases.
    Oerke EC
    Annu Rev Phytopathol; 2020 Aug; 58():225-252. PubMed ID: 32853102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercomparison of Same-Day Remote Sensing Data for Measuring Winter Cover Crop Biophysical Traits.
    Thieme A; Prabhakara K; Jennewein J; Lamb BT; McCarty GW; Hively WD
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-high-resolution hyperspectral imagery datasets for precision agriculture applications.
    Munipalle VK; Nelakuditi UR; C V S S MK; Nidamanuri RR
    Data Brief; 2024 Aug; 55():110649. PubMed ID: 39035837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping multi-scale vascular plant richness in a forest landscape with integrated LiDAR and hyperspectral remote-sensing.
    Hakkenberg CR; Zhu K; Peet RK; Song C
    Ecology; 2018 Feb; 99(2):474-487. PubMed ID: 29231965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine and Deep Learning: Artificial Intelligence Application in Biotic and Abiotic Stress Management in Plants.
    Gou C; Zafar S; Hasnain Z; Aslam N; Iqbal N; Abbas S; Li H; Li J; Chen B; Ragauskas AJ; Abbas M
    Front Biosci (Landmark Ed); 2024 Jan; 29(1):20. PubMed ID: 38287813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of UAS in Crop Biomass Monitoring: A Review.
    Wang T; Liu Y; Wang M; Fan Q; Tian H; Qiao X; Li Y
    Front Plant Sci; 2021; 12():616689. PubMed ID: 33897719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture.
    Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precision Agriculture Techniques and Practices: From Considerations to Applications.
    Shafi U; Mumtaz R; García-Nieto J; Hassan SA; Zaidi SAR; Iqbal N
    Sensors (Basel); 2019 Sep; 19(17):. PubMed ID: 31480709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New strategies on the application of artificial intelligence in the field of phytoremediation.
    Singh P; Pani A; Mujumdar AS; Shirkole SS
    Int J Phytoremediation; 2023; 25(4):505-523. PubMed ID: 35802802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evapotranspiration Estimation with Small UAVs in Precision Agriculture.
    Niu H; Hollenbeck D; Zhao T; Wang D; Chen Y
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pixel to practice: multi-scale image data for calibrating remote-sensing-based winter wheat monitoring methods.
    Anderegg J; Tschurr F; Kirchgessner N; Treier S; Graf LV; Schmucki M; Caflisch N; Minguely C; Streit B; Walter A
    Sci Data; 2024 Sep; 11(1):1033. PubMed ID: 39333128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.