These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 33383864)
1. Minimal Tissue Reaction after Chronic Subdural Electrode Implantation for Fully Implantable Brain-Machine Interfaces. Yan T; Kameda S; Suzuki K; Kaiju T; Inoue M; Suzuki T; Hirata M Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33383864 [TBL] [Abstract][Full Text] [Related]
2. Chronic subdural electrocorticography in nonhuman primates by an implantable wireless device for brain-machine interfaces. Yan T; Suzuki K; Kameda S; Maeda M; Mihara T; Hirata M Front Neurosci; 2023; 17():1260675. PubMed ID: 37841689 [TBL] [Abstract][Full Text] [Related]
3. Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. Degenhart AD; Eles J; Dum R; Mischel JL; Smalianchuk I; Endler B; Ashmore RC; Tyler-Kabara EC; Hatsopoulos NG; Wang W; Batista AP; Cui XT J Neural Eng; 2016 Aug; 13(4):046019. PubMed ID: 27351722 [TBL] [Abstract][Full Text] [Related]
4. A novel neural prosthesis providing long-term electrocorticography recording and cortical stimulation for epilepsy and brain-computer interface. Romanelli P; Piangerelli M; Ratel D; Gaude C; Costecalde T; Puttilli C; Picciafuoco M; Benabid A; Torres N J Neurosurg; 2019 Apr; 130(4):1166-1179. PubMed ID: 29749917 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the effects of the human dura on macro- and micro-electrocorticographic recordings. Bundy DT; Zellmer E; Gaona CM; Sharma M; Szrama N; Hacker C; Freudenburg ZV; Daitch A; Moran DW; Leuthardt EC J Neural Eng; 2014 Feb; 11(1):016006. PubMed ID: 24654268 [TBL] [Abstract][Full Text] [Related]
7. A Fully Implantable Wireless ECoG 128-Channel Recording Device for Human Brain-Machine Interfaces: W-HERBS. Matsushita K; Hirata M; Suzuki T; Ando H; Yoshida T; Ota Y; Sato F; Morris S; Sugata H; Goto T; Yanagisawa T; Yoshimine T Front Neurosci; 2018; 12():511. PubMed ID: 30131666 [TBL] [Abstract][Full Text] [Related]
8. Chronic multisite brain recordings from a totally implantable bidirectional neural interface: experience in 5 patients with Parkinson's disease. Swann NC; de Hemptinne C; Miocinovic S; Qasim S; Ostrem JL; Galifianakis NB; Luciano MS; Wang SS; Ziman N; Taylor R; Starr PA J Neurosurg; 2018 Feb; 128(2):605-616. PubMed ID: 28409730 [TBL] [Abstract][Full Text] [Related]
9. A benchtop system to assess the feasibility of a fully independent and implantable brain-machine interface. Wang PT; Camacho E; Wang M; Li Y; Shaw SJ; Armacost M; Gong H; Kramer D; Lee B; Andersen RA; Liu CY; Heydari P; Nenadic Z; Do AH J Neural Eng; 2019 Nov; 16(6):066043. PubMed ID: 31585451 [TBL] [Abstract][Full Text] [Related]
10. Patient-specific contour-fitting sheet electrodes for electrocorticographic brain machine interfaces. Hirata M; Morris S; Sugata H; Matsushita K; Yanagisawa T; Kishima H; Yoshimine T Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5204-7. PubMed ID: 25571166 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic extracellular matrix coatings improve the chronic biocompatibility of microfabricated subdural microelectrode arrays. Vitale F; Shen W; Driscoll N; Burrell JC; Richardson AG; Adewole O; Murphy B; Ananthakrishnan A; Oh H; Wang T; Lucas TH; Cullen DK; Allen MG; Litt B PLoS One; 2018; 13(11):e0206137. PubMed ID: 30383805 [TBL] [Abstract][Full Text] [Related]
12. Multichannel neural recording with a 128 Mbps UWB wireless transmitter for implantable brain-machine interfaces. Ando H; Takizawa K; Yoshida T; Matsushita K; Hirata M; Suzuki T Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4097-100. PubMed ID: 26737195 [TBL] [Abstract][Full Text] [Related]
13. Can histology solve the riddle of the nonfunctioning electrode? Factors influencing the biocompatibility of brain machine interfaces. Linsmeier CE; Thelin J; Danielsen N Prog Brain Res; 2011; 194():181-9. PubMed ID: 21867803 [TBL] [Abstract][Full Text] [Related]
14. When to include ECoG electrode properties in volume conduction models. Vermaas M; Piastra MC; Oostendorp TF; Ramsey NF; Tiesinga PHE J Neural Eng; 2020 Oct; 17(5):056031. PubMed ID: 33055363 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of μECoG electrode arrays in the minipig: experimental procedure and neurosurgical approach. Gierthmuehlen M; Ball T; Henle C; Wang X; Rickert J; Raab M; Freiman T; Stieglitz T; Kaminsky J J Neurosci Methods; 2011 Oct; 202(1):77-86. PubMed ID: 21896285 [TBL] [Abstract][Full Text] [Related]
16. Nine decades of electrocorticography: A comparison between epidural and subdural recordings. Branco MP; Geukes SH; Aarnoutse EJ; Ramsey NF; Vansteensel MJ Eur J Neurosci; 2023 Apr; 57(8):1260-1288. PubMed ID: 36843389 [TBL] [Abstract][Full Text] [Related]
17. Optimizing the neuron-electrode interface for chronic bioelectronic interfacing. Keogh C Neurosurg Focus; 2020 Jul; 49(1):E7. PubMed ID: 32610294 [TBL] [Abstract][Full Text] [Related]
19. A soft and stretchable bilayer electrode array with independent functional layers for the next generation of brain machine interfaces. Graudejus O; Barton C; Ponce Wong RD; Rowan CC; Oswalt D; Greger B J Neural Eng; 2020 Oct; 17(5):056023. PubMed ID: 33052886 [TBL] [Abstract][Full Text] [Related]
20. Development of an implantable wireless ECoG 128ch recording device for clinical brain machine interface. Matsushita K; Hirata M; Suzuki T; Ando H; Ota Y; Sato F; Morris S; Yoshida T; Matsuki H; Yoshimine T Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1867-70. PubMed ID: 24110075 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]