These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33383870)

  • 1. Effect of Physiological Saline Solution Contamination on Selected Mechanical Properties of Seasoned Acrylic Bone Cements of Medium and High Viscosity.
    Karpiński R; Szabelski J; Krakowski P; Jonak J
    Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33383870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the Effect of Component Ratio Imbalances on Selected Mechanical Properties of Seasoned, Medium Viscosity Bone Cements.
    Szabelski J; Karpiński R; Krakowski P; Jojczuk M; Jonak J; Nogalski A
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Effect of Selected Physiological Fluid Contaminants on the Mechanical Properties of Selected Medium-Viscosity PMMA Bone Cements.
    Karpiński R; Szabelski J; Krakowski P; Jojczuk M; Jonak J; Nogalski A
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasoning Polymethyl Methacrylate (PMMA) Bone Cements with Incorrect Mix Ratio.
    Karpiński R; Szabelski J; Maksymiuk J
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31547178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Physiological Fluids Contamination on Selected Mechanical Properties of Acrylate Bone Cement.
    Karpiński R; Szabelski J; Maksymiuk J
    Materials (Basel); 2019 Nov; 12(23):. PubMed ID: 31795371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Compressive fatigue properties of commercially available standard and low-modulus acrylic bone cements intended for vertebroplasty.
    Robo C; Öhman-Mägi C; Persson C
    J Mech Behav Biomed Mater; 2018 Jun; 82():70-76. PubMed ID: 29571115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Impact of Contaminating Poly (Methyl Methacrylate) (PMMA) Bone Cements on Their Compressive Strength.
    Szabelski J; Karpiński R; Krakowski P; Jonak J
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34069222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of hydroxyapatite reinforced poly(ethylmethacrylate) bone cement after immersion in a physiological solution: influence of a silane coupling agent.
    Harper EJ; Braden M; Bonfield W
    J Mater Sci Mater Med; 2000 Aug; 11(8):491-7. PubMed ID: 15347999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural degradation of acrylic bone cements due to in vivo and simulated aging.
    Hughes KF; Ries MD; Pruitt LA
    J Biomed Mater Res A; 2003 May; 65(2):126-35. PubMed ID: 12734804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acrylic bone cements: influence of time and environment on physical properties.
    Nottrott M
    Acta Orthop Suppl; 2010 Jun; 81(341):1-27. PubMed ID: 20486859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of imidazolium-containing mono-methacrylates as polymerizable antibacterial agents for acrylic bone cements.
    Zhu W; Liu F; He J
    J Mech Behav Biomed Mater; 2017 Oct; 74():176-182. PubMed ID: 28601760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative influence of composition and viscosity of acrylic bone cement on its apparent fracture toughness.
    Lewis G
    Biomed Mater Eng; 2000; 10(1):1-11. PubMed ID: 10950202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time and mixing technique-dependent changes in bone cement SmartSet® HV.
    Lelovics H; Liptáková T
    Acta Bioeng Biomech; 2010; 12(4):63-7. PubMed ID: 21361258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compressive fatigue properties of a commercially available acrylic bone cement for vertebroplasty.
    Ajaxon I; Persson C
    Biomech Model Mechanobiol; 2014 Nov; 13(6):1199-207. PubMed ID: 24659042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A study on the mechanical properties of bone cement (methylmethacrylate) and its strength alteration in vivo (author's transl)].
    Kon H
    Nihon Seikeigeka Gakkai Zasshi; 1981 Jan; 55(1):71-83. PubMed ID: 7276662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical properties and comparative strength of a bioactive luting cement.
    Jefferies S; Lööf J; Pameijer CH; Boston D; Galbraith C; Hermansson L
    Compend Contin Educ Dent; 2013; 34 Spec No 8():8-14. PubMed ID: 24568170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physicochemical properties of TTCP/DCPA system cement formed in physiological saline solution and its cytotoxicity.
    Dagang G; Kewei X; Haoliang S; Yong H
    J Biomed Mater Res A; 2006 May; 77(2):313-23. PubMed ID: 16402384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic creep behavior of acrylic bone cement.
    Verdonschot N; Huiskes R
    J Biomed Mater Res; 1995 May; 29(5):575-81. PubMed ID: 7622542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The significance of wear and material fatigue in loosening of hip prostheses].
    Willert HG; Buchhorn GH; Hess T
    Orthopade; 1989 Sep; 18(5):350-69. PubMed ID: 2682455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.