These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
272 related articles for article (PubMed ID: 33384126)
1. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation. Zhu Z; Wu D; Li S; Han Y; Xiang N; Wang C; Ni Z Anal Chim Acta; 2021 Jan; 1143():306-314. PubMed ID: 33384126 [TBL] [Abstract][Full Text] [Related]
2. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement. Xiang N; Wang J; Li Q; Han Y; Huang D; Ni Z Anal Chem; 2019 Aug; 91(15):10328-10334. PubMed ID: 31304740 [TBL] [Abstract][Full Text] [Related]
4. Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods. Huang D; Xiang N Lab Chip; 2021 Apr; 21(7):1409-1417. PubMed ID: 33605279 [TBL] [Abstract][Full Text] [Related]
5. A low-cost and high-throughput benchtop cell sorter for isolating white blood cells from whole blood. Lu X; Tayebi M; Ai Y Electrophoresis; 2021 Nov; 42(21-22):2281-2292. PubMed ID: 34010478 [TBL] [Abstract][Full Text] [Related]
6. Electricity-free hand-held inertial microfluidic sorter for size-based cell sorting. Xiang N; Ni Z Talanta; 2021 Dec; 235():122807. PubMed ID: 34517664 [TBL] [Abstract][Full Text] [Related]
7. An Integrated Inertial-Magnetophoresis Microfluidic Chip Online-Coupled with ICP-MS for Rapid Separation and Precise Detection of Circulating Tumor Cells. Cai J; Chen B; He M; Yuan G; Hu B Anal Chem; 2024 Sep; 96(35):14222-14229. PubMed ID: 39159467 [TBL] [Abstract][Full Text] [Related]
8. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel. Islam MS; Chen X Biotechnol Prog; 2023; 39(4):e3341. PubMed ID: 36970770 [TBL] [Abstract][Full Text] [Related]
9. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics. Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599 [TBL] [Abstract][Full Text] [Related]
10. Spiral microchannels with concave cross-section for enhanced cancer cell inertial separation. Zhang X; Zheng Z; Gu Q; He Y; Huang D; Liu Y; Mi J; Oseyemi AE Mikrochim Acta; 2024 Sep; 191(10):634. PubMed ID: 39347843 [TBL] [Abstract][Full Text] [Related]
11. Influence factors of channel geometry for separation of circulating tumor cells by four-ring inertial focusing microchannel. Liu D; Chen S; Luo X Cell Biochem Funct; 2023 Apr; 41(3):375-388. PubMed ID: 36951265 [TBL] [Abstract][Full Text] [Related]
13. Size-tuneable isolation of cancer cells using stretchable inertial microfluidics. Fallahi H; Yadav S; Phan HP; Ta H; Zhang J; Nguyen NT Lab Chip; 2021 May; 21(10):2008-2018. PubMed ID: 34008666 [TBL] [Abstract][Full Text] [Related]
14. High-throughput and label-free enrichment of malignant tumor cells and clusters from pleural and peritoneal effusions using inertial microfluidics. Zhu Z; Li S; Wu D; Ren H; Ni C; Wang C; Xiang N; Ni Z Lab Chip; 2022 May; 22(11):2097-2106. PubMed ID: 35441644 [TBL] [Abstract][Full Text] [Related]
15. Separation of CTCs from WBCs using DEP-assisted inertial manipulation: A numerical study. Uddin MR; Sarowar MT; Chen X Electrophoresis; 2023 Dec; 44(23):1781-1794. PubMed ID: 37753944 [TBL] [Abstract][Full Text] [Related]
16. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples. Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078 [TBL] [Abstract][Full Text] [Related]
17. An experimental study of centrifugal microfluidic platforms for magnetic-inertial separation of circulating tumor cells using contraction-expansion and zigzag arrays. Momeni M; Shamloo A; Hasani-Gangaraj M; Dezhkam R J Chromatogr A; 2023 Sep; 1706():464249. PubMed ID: 37531849 [TBL] [Abstract][Full Text] [Related]
18. Low-cost multi-core inertial microfluidic centrifuge for high-throughput cell concentration. Xiang N; Li Q; Shi Z; Zhou C; Jiang F; Han Y; Ni Z Electrophoresis; 2020 Jun; 41(10-11):875-882. PubMed ID: 31705675 [TBL] [Abstract][Full Text] [Related]
19. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Warkiani ME; Guan G; Luan KB; Lee WC; Bhagat AA; Chaudhuri PK; Tan DS; Lim WT; Lee SC; Chen PC; Lim CT; Han J Lab Chip; 2014 Jan; 14(1):128-37. PubMed ID: 23949794 [TBL] [Abstract][Full Text] [Related]
20. High-Throughput Isolation of Circulating Tumor Cells Using Cascaded Inertial Focusing Microfluidic Channel. Abdulla A; Liu W; Gholamipour-Shirazi A; Sun J; Ding X Anal Chem; 2018 Apr; 90(7):4397-4405. PubMed ID: 29537252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]