BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33384262)

  • 1. Evolution-Driven Versatility of N Terminal Acetylation in Photoautotrophs.
    Giglione C; Meinnel T
    Trends Plant Sci; 2021 Apr; 26(4):375-391. PubMed ID: 33384262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Nucleus to Membrane: A Subcellular Map of the N-Acetylation Machinery in Plants.
    Pożoga M; Armbruster L; Wirtz M
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual lysine and N-terminal acetyltransferases reveal the complexity underpinning protein acetylation.
    Bienvenut WV; Brünje A; Boyer JB; Mühlenbeck JS; Bernal G; Lassowskat I; Dian C; Linster E; Dinh TV; Koskela MM; Jung V; Seidel J; Schyrba LK; Ivanauskaite A; Eirich J; Hell R; Schwarzer D; Mulo P; Wirtz M; Meinnel T; Giglione C; Finkemeier I
    Mol Syst Biol; 2020 Jul; 16(7):e9464. PubMed ID: 32633465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N-terminal acetylation: an essential protein modification emerges as an important regulator of stress responses.
    Linster E; Wirtz M
    J Exp Bot; 2018 Aug; 69(19):4555-4568. PubMed ID: 29945174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale analysis of regulatory protein acetylation enzymes from photosynthetic eukaryotes.
    Uhrig RG; Schläpfer P; Mehta D; Hirsch-Hoffmann M; Gruissem W
    BMC Genomics; 2017 Jul; 18(1):514. PubMed ID: 28679357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular identification and functional characterization of the first Nα-acetyltransferase in plastids by global acetylome profiling.
    Dinh TV; Bienvenut WV; Linster E; Feldman-Salit A; Jung VA; Meinnel T; Hell R; Giglione C; Wirtz M
    Proteomics; 2015 Jul; 15(14):2426-35. PubMed ID: 25951519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Versatility of ARD1/NAA10-mediated protein lysine acetylation.
    Vo TTL; Jeong CH; Lee S; Kim KW; Ha E; Seo JH
    Exp Mol Med; 2018 Jul; 50(7):1-13. PubMed ID: 30054464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biological functions of Naa10 - From amino-terminal acetylation to human disease.
    Dörfel MJ; Lyon GJ
    Gene; 2015 Aug; 567(2):103-31. PubMed ID: 25987439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-translational, Post-translational, and Non-catalytic Roles of N-Terminal Acetyltransferases.
    Aksnes H; Ree R; Arnesen T
    Mol Cell; 2019 Mar; 73(6):1097-1114. PubMed ID: 30878283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids.
    Cenci U; Sibbald SJ; Curtis BA; Kamikawa R; Eme L; Moog D; Henrissat B; Maréchal E; Chabi M; Djemiel C; Roger AJ; Kim E; Archibald JM
    BMC Biol; 2018 Nov; 16(1):137. PubMed ID: 30482201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative N-Terminal Footprinting of Pathogenic Mycobacteria Reveals Differential Protein Acetylation.
    Thompson CR; Champion MM; Champion PA
    J Proteome Res; 2018 Sep; 17(9):3246-3258. PubMed ID: 30080413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymes of cysteine synthesis show extensive and conserved modifications patterns that include N(α)-terminal acetylation.
    Wirtz M; Heeg C; Samami AA; Ruppert T; Hell R
    Amino Acids; 2010 Oct; 39(4):1077-86. PubMed ID: 20658158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein targeting into plastids: a key to understanding the symbiogenetic acquisitions of plastids.
    Ishida K
    J Plant Res; 2005 Aug; 118(4):237-45. PubMed ID: 16044198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Reduced Plastid Genomes of the Non-photosynthetic Dictyochophyceans
    Kayama M; Maciszewski K; Yabuki A; Miyashita H; Karnkowska A; Kamikawa R
    Front Plant Sci; 2020; 11():602455. PubMed ID: 33329672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of horizontal gene transfer in the evolution of photosynthetic eukaryotes and their plastids.
    Keeling PJ
    Methods Mol Biol; 2009; 532():501-15. PubMed ID: 19271204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.
    Hadariová L; Vesteg M; Hampl V; Krajčovič J
    Curr Genet; 2018 Apr; 64(2):365-387. PubMed ID: 29026976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Non-photosynthetic Diatom Reveals Early Steps of Reductive Evolution in Plastids.
    Kamikawa R; Moog D; Zauner S; Tanifuji G; Ishida KI; Miyashita H; Mayama S; Hashimoto T; Maier UG; Archibald JM; Inagaki Y
    Mol Biol Evol; 2017 Sep; 34(9):2355-2366. PubMed ID: 28549159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again.
    Oborník M; Janouskovec J; Chrudimský T; Lukes J
    Int J Parasitol; 2009 Jan; 39(1):1-12. PubMed ID: 18822291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate specificity of plastid phosphate transporters in a non-photosynthetic diatom and its implication in evolution of red alga-derived complex plastids.
    Moog D; Nozawa A; Tozawa Y; Kamikawa R
    Sci Rep; 2020 Jan; 10(1):1167. PubMed ID: 31980711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new scenario of plastid evolution: plastid primary endosymbiosis before the divergence of the "Plantae," emended.
    Nozaki H
    J Plant Res; 2005 Aug; 118(4):247-55. PubMed ID: 16032387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.