These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33384262)

  • 41. Spotlight on protein N-terminal acetylation.
    Ree R; Varland S; Arnesen T
    Exp Mol Med; 2018 Jul; 50(7):1-13. PubMed ID: 30054468
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comprehensive proteome analyses of lysine acetylation in tea leaves by sensing nitrogen nutrition.
    Jiang J; Gai Z; Wang Y; Fan K; Sun L; Wang H; Ding Z
    BMC Genomics; 2018 Nov; 19(1):840. PubMed ID: 30477445
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Global analysis of protein lysine succinylation profiles in common wheat.
    Zhang Y; Wang G; Song L; Mu P; Wang S; Liang W; Lin Q
    BMC Genomics; 2017 Apr; 18(1):309. PubMed ID: 28427325
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Organization, developmental dynamics, and evolution of plastid nucleoids.
    Sato N; Terasawa K; Miyajima K; Kabeya Y
    Int Rev Cytol; 2003; 232():217-62. PubMed ID: 14711120
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeted large-scale analysis of protein acetylation.
    Mischerikow N; Heck AJ
    Proteomics; 2011 Feb; 11(4):571-89. PubMed ID: 21246731
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protein Acetylation in Bacteria.
    VanDrisse CM; Escalante-Semerena JC
    Annu Rev Microbiol; 2019 Sep; 73():111-132. PubMed ID: 31091420
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The monoplastidic bottleneck in algae and plant evolution.
    de Vries J; Gould SB
    J Cell Sci; 2018 Jan; 131(2):. PubMed ID: 28893840
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A stable start: cotranslational Nt-acetylation promotes proteome stability across kingdoms.
    Gibbs DJ; Bailey M; Etherington RD
    Trends Cell Biol; 2022 May; 32(5):374-376. PubMed ID: 35260326
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Non-photosynthetic plastids as hosts for metabolic engineering.
    Mellor SB; Behrendorff JBYH; Nielsen AZ; Jensen PE; Pribil M
    Essays Biochem; 2018 Apr; 62(1):41-50. PubMed ID: 29487195
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids?
    Huang J; Gogarten JP
    Genome Biol; 2007; 8(6):R99. PubMed ID: 17547748
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate Lepidodinium chlorophorum.
    Kamikawa R; Tanifuji G; Kawachi M; Miyashita H; Hashimoto T; Inagaki Y
    Genome Biol Evol; 2015 Apr; 7(4):1133-40. PubMed ID: 25840416
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes.
    Grauvogel C; Brinkmann H; Petersen J
    Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative Plastid Genomics of Cryptomonas Species Reveals Fine-Scale Genomic Responses to Loss of Photosynthesis.
    Tanifuji G; Kamikawa R; Moore CE; Mills T; Onodera NT; Kashiyama Y; Archibald JM; Inagaki Y; Hashimoto T
    Genome Biol Evol; 2020 Feb; 12(2):3926-3937. PubMed ID: 31922581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bioinformatics analysis of a Saccharomyces cerevisiae N-terminal proteome provides evidence of alternative translation initiation and post-translational N-terminal acetylation.
    Helsens K; Van Damme P; Degroeve S; Martens L; Arnesen T; Vandekerckhove J; Gevaert K
    J Proteome Res; 2011 Aug; 10(8):3578-89. PubMed ID: 21619078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of the Arabidopsis cytosolic ribosome proteome provides detailed insights into its components and their post-translational modification.
    Carroll AJ; Heazlewood JL; Ito J; Millar AH
    Mol Cell Proteomics; 2008 Feb; 7(2):347-69. PubMed ID: 17934214
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The cellular machineries responsible for the division of endosymbiotic organelles.
    Yoshida Y
    J Plant Res; 2018 Sep; 131(5):727-734. PubMed ID: 29948488
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular, cellular, and physiological significance of N-terminal acetylation.
    Aksnes H; Hole K; Arnesen T
    Int Rev Cell Mol Biol; 2015; 316():267-305. PubMed ID: 25805127
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Plastid evolution: origins, diversity, trends.
    Douglas SE
    Curr Opin Genet Dev; 1998 Dec; 8(6):655-61. PubMed ID: 9914199
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Endosymbiosis: double-take on plastid origins.
    Archibald JM
    Curr Biol; 2006 Sep; 16(17):R690-2. PubMed ID: 16950094
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plastid genes in a non-photosynthetic dinoflagellate.
    Sanchez-Puerta MV; Lippmeier JC; Apt KE; Delwiche CF
    Protist; 2007 Jan; 158(1):105-17. PubMed ID: 17150410
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.