BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 33384328)

  • 1. Engineering exosome polymer hybrids by atom transfer radical polymerization.
    Lathwal S; Yerneni SS; Boye S; Muza UL; Takahashi S; Sugimoto N; Lederer A; Das SR; Campbell PG; Matyjaszewski K
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33384328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled Release of Exosomes Using Atom Transfer Radical Polymerization-Based Hydrogels.
    Yerneni SS; Lathwal S; Cuthbert J; Kapil K; Szczepaniak G; Jeong J; Das SR; Campbell PG; Matyjaszewski K
    Biomacromolecules; 2022 Apr; 23(4):1713-1722. PubMed ID: 35302760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanogel hybrid assembly for exosome intracellular delivery: effects on endocytosis and fusion by exosome surface polymer engineering.
    Sawada SI; Sato YT; Kawasaki R; Yasuoka JI; Mizuta R; Sasaki Y; Akiyoshi K
    Biomater Sci; 2020 Jan; 8(2):619-630. PubMed ID: 31833484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PNIPAM grafted surfaces through ATRP and RAFT polymerization: Chemistry and bioadhesion.
    Conzatti G; Cavalie S; Combes C; Torrisani J; Carrere N; Tourrette A
    Colloids Surf B Biointerfaces; 2017 Mar; 151():143-155. PubMed ID: 27992845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered Exosome for Drug Delivery: Recent Development and Clinical Applications.
    Tian J; Han Z; Song D; Peng Y; Xiong M; Chen Z; Duan S; Zhang L
    Int J Nanomedicine; 2023; 18():7923-7940. PubMed ID: 38152837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.
    Clafshenkel WP; Murata H; Andersen J; Creeger Y; Koepsel RR; Russell AJ
    PLoS One; 2016; 11(6):e0157641. PubMed ID: 27331401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of contrast agents for magnetic resonance imaging from polymer-brush-afforded iron oxide magnetic nanoparticles prepared by surface-initiated living radical polymerization.
    Ohno K; Mori C; Akashi T; Yoshida S; Tago Y; Tsujii Y; Tabata Y
    Biomacromolecules; 2013 Oct; 14(10):3453-62. PubMed ID: 23957585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering exosomes as refined biological nanoplatforms for drug delivery.
    Luan X; Sansanaphongpricha K; Myers I; Chen H; Yuan H; Sun D
    Acta Pharmacol Sin; 2017 Jun; 38(6):754-763. PubMed ID: 28392567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid On-Demand Extracellular Vesicle Augmentation with Versatile Oligonucleotide Tethers.
    Yerneni SS; Lathwal S; Shrestha P; Shirwan H; Matyjaszewski K; Weiss L; Yolcu ES; Campbell PG; Das SR
    ACS Nano; 2019 Sep; 13(9):10555-10565. PubMed ID: 31436946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-active and stimuli-responsive polymer--Si(100) hybrids from surface-initiated atom transfer radical polymerization for control of cell adhesion.
    Xu FJ; Zhong SP; Yung LY; Kang ET; Neoh KG
    Biomacromolecules; 2004; 5(6):2392-403. PubMed ID: 15530056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering exosomes for targeted drug delivery.
    Liang Y; Duan L; Lu J; Xia J
    Theranostics; 2021; 11(7):3183-3195. PubMed ID: 33537081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer.
    Pan X; Lathwal S; Mack S; Yan J; Das SR; Matyjaszewski K
    Angew Chem Int Ed Engl; 2017 Mar; 56(10):2740-2743. PubMed ID: 28164438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tapping the potential of polymer brushes through synthesis.
    Li B; Yu B; Ye Q; Zhou F
    Acc Chem Res; 2015 Feb; 48(2):229-37. PubMed ID: 25521476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering blood exosomes for tumor-targeting efficient gene/chemo combination therapy.
    Zhan Q; Yi K; Qi H; Li S; Li X; Wang Q; Wang Y; Liu C; Qiu M; Yuan X; Zhao J; Hou X; Kang C
    Theranostics; 2020; 10(17):7889-7905. PubMed ID: 32685027
    [No Abstract]   [Full Text] [Related]  

  • 15. Loading of metal isotope-containing intercalators for mass cytometry-based high-throughput quantitation of exosome uptake at the single-cell level.
    Wang J; Tu C; Zhang H; Zhang J; Feng Y; Deng Y; Huo Y; Xie M; Yang B; Zhou M; Liu J
    Biomaterials; 2020 Oct; 255():120152. PubMed ID: 32505035
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exosome engineering in cell therapy and drug delivery.
    Sadeghi S; Tehrani FR; Tahmasebi S; Shafiee A; Hashemi SM
    Inflammopharmacology; 2023 Feb; 31(1):145-169. PubMed ID: 36609717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fentanyl Initiated Polymers Prepared by ATRP for Targeted Delivery.
    Cohen-Karni D; Kovaliov M; Li S; Jaffee S; Tomycz ND; Averick S
    Bioconjug Chem; 2017 Apr; 28(4):1251-1259. PubMed ID: 28328199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein-polymer therapeutics: a macromolecular perspective.
    Wu Y; Ng DY; Kuan SL; Weil T
    Biomater Sci; 2015 Feb; 3(2):214-30. PubMed ID: 26218113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity.
    Ferguson SW; Nguyen J
    J Control Release; 2016 Apr; 228():179-190. PubMed ID: 26941033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exosomes: Cell-Derived Nanoplatforms for the Delivery of Cancer Therapeutics.
    Kim H; Kim EH; Kwak G; Chi SG; Kim SH; Yang Y
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.