BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 33384887)

  • 1. Heartbeat-Induced Corneal Axial Displacement and Strain Measured by High Frequency Ultrasound Elastography in Human Volunteers.
    Kwok S; Clayson K; Hazen N; Pan X; Ma Y; Hendershot AJ; Liu J
    Transl Vis Sci Technol; 2020 Dec; 9(13):33. PubMed ID: 33384887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ocular Pulse Elastography: Imaging Corneal Biomechanical Responses to Simulated Ocular Pulse Using Ultrasound.
    Clayson K; Pavlatos E; Pan X; Sandwisch T; Ma Y; Liu J
    Transl Vis Sci Technol; 2020 Jan; 9(1):5. PubMed ID: 32509440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-frequency ultrasound detects biomechanical weakening in keratoconus with lower stiffness at higher grade.
    Kwok S; Pan X; Liu W; Hendershot A; Liu J
    PLoS One; 2022; 17(7):e0271749. PubMed ID: 35857808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging Corneal Biomechanical Responses to Ocular Pulse Using High-Frequency Ultrasound.
    Pavlatos E; Chen H; Clayson K; Pan X; Liu J
    IEEE Trans Med Imaging; 2018 Feb; 37(2):663-670. PubMed ID: 29408793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration.
    Lan G; Gu B; Larin KV; Twa MD
    Transl Vis Sci Technol; 2020 Apr; 9(5):3. PubMed ID: 32821475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heartbeat OCE: corneal biomechanical response to simulated heartbeat pulsation measured by optical coherence elastography.
    Nair A; Singh M; Aglyamov SR; Larin KV
    J Biomed Opt; 2020 May; 25(5):1-9. PubMed ID: 32372574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live human assessment of depth-dependent corneal displacements with swept-source optical coherence elastography.
    De Stefano VS; Ford MR; Seven I; Dupps WJ
    PLoS One; 2018; 13(12):e0209480. PubMed ID: 30592752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Clinical evaluation of the Pascal dynamic contour tonometer].
    Detry-Morel M; Jamart J; Detry MB; Ledoux A; Pourjavan S
    J Fr Ophtalmol; 2007 Mar; 30(3):260-70. PubMed ID: 17417152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraocular pressure measurement precision with the Goldmann applanation, dynamic contour, and ocular response analyzer tonometers.
    Kotecha A; White E; Schlottmann PG; Garway-Heath DF
    Ophthalmology; 2010 Apr; 117(4):730-7. PubMed ID: 20122737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo noninvasive measurement of spatially resolved corneal elasticity in human eyes using Lamb wave optical coherence elastography.
    Jin Z; Chen S; Dai Y; Bao C; Ye S; Zhou Y; Wang Y; Huang S; Wang Y; Shen M; Zhu D; Lu F
    J Biophotonics; 2020 Aug; 13(8):e202000104. PubMed ID: 32368840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of dynamic contour tonometry and Goldmann applanation tonometry and their relationship to corneal properties, refractive error, and ocular pulse amplitude.
    Erickson DH; Goodwin D; Rollins M; Belaustegui A; Anderson C
    Optometry; 2009 Apr; 80(4):169-74. PubMed ID: 19329059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of corneal edema on dynamic contour and goldmann tonometry.
    Hamilton KE; Pye DC; Kao L; Pham N; Tran AQ
    Optom Vis Sci; 2008 Jun; 85(6):451-6. PubMed ID: 18521023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regional variation of corneal stromal deformation measured by high-frequency ultrasound elastography.
    Kwok S; Hazen N; Clayson K; Pan X; Liu J
    Exp Biol Med (Maywood); 2021 Oct; 246(20):2184-2191. PubMed ID: 34315279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Noninvasive Measurement of Young's Modulus of Elasticity in Human Eyes: A Feasibility Study.
    Sit AJ; Lin SC; Kazemi A; McLaren JW; Pruet CM; Zhang X
    J Glaucoma; 2017 Nov; 26(11):967-973. PubMed ID: 28858155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraocular Pressure-dependent Corneal Elasticity Measurement Using High-frequency Ultrasound.
    Osapoetra LO; Watson DM; McAleavey SA
    Ultrason Imaging; 2019 Sep; 41(5):251-270. PubMed ID: 31271117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corneal pulsation and biomechanics during induced ocular pulse. An ex-vivo pilot study.
    Rogala MM; Lewandowski D; Detyna J; Antończyk A; Danielewska ME
    PLoS One; 2020; 15(2):e0228920. PubMed ID: 32053692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of central corneal thickness and corneal hysteresis on tonometry as measured by dynamic contour tonometry, ocular response analyzer, and Goldmann tonometry in glaucomatous eyes.
    Hager A; Loge K; Schroeder B; Füllhas MO; Wiegand W
    J Glaucoma; 2008 Aug; 17(5):361-5. PubMed ID: 18703945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can Corneal Biomechanical Properties Explain Difference in Tonometric Measurement in Normal Eyes?
    Dey A; David RL; Asokan R; George R
    Optom Vis Sci; 2018 Feb; 95(2):120-128. PubMed ID: 29370019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [How does central cornea thickness influence intraocular pressure during applanation and contour tonometry?].
    Schwenteck T; Knappe M; Moros I
    Klin Monbl Augenheilkd; 2012 Sep; 229(9):917-27. PubMed ID: 22972357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Correlation between corneal hysteresis, corneal resistance factor, and ocular pulse amplitude in healthy subjects].
    Ehongo A; de Maertelaer V; Cullus P; Pourjavan S
    J Fr Ophtalmol; 2008 Dec; 31(10):999-1005. PubMed ID: 19107077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.