BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 33384888)

  • 21. Meropenem loaded 4-arm-polyethylene-succinimidyl-carboxymethyl ester and hyaluronic acid based bacterial resistant hydrogel.
    Yadav I; Purohit SD; Singh H; Das NS; Ghosh C; Roy P; Mishra NC
    Int J Biol Macromol; 2023 Apr; 235():123842. PubMed ID: 36854369
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Safety and performance assessment of hyaluronic acid-based vitreous substitutes in patients with phthisis bulbi.
    Schulz A; Wakili P; Januschowski K; Heinz WR; Engelhard M; Menz H; Szurman P
    Acta Ophthalmol; 2023 Sep; 101(6):687-695. PubMed ID: 36912796
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Forward Light Scattering of First to Third Generation Vitreous Body Replacement Hydrogels after Surgical Application Compared to Conventional Silicone Oils and Vitreous Body.
    Hammer M; Herth J; Muuss M; Schickhardt S; Scheuerle A; Khoramnia R; Łabuz G; Uhl P; Auffarth GU
    Gels; 2023 Oct; 9(10):. PubMed ID: 37888410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PVA/STMP based hydrogels as potential substitutes of human vitreous.
    Leone G; Consumi M; Aggravi M; Donati A; Lamponi S; Magnani A
    J Mater Sci Mater Med; 2010 Aug; 21(8):2491-500. PubMed ID: 20499140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Macro- and Microscale Properties of the Vitreous Humor to Inform Substitute Design and Intravitreal Biotransport.
    Tram NK; Maxwell CJ; Swindle-Reilly KE
    Curr Eye Res; 2021 Apr; 46(4):429-444. PubMed ID: 33040616
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Injectable alginate-based in situ self-healable transparent hydrogel as a vitreous substitute with a tamponading function.
    Choi G; An SH; Choi JW; Rho MS; Park WC; Jeong WJ; Cha HJ
    Biomaterials; 2024 Mar; 305():122459. PubMed ID: 38199216
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vitreous substitutes: a comprehensive review.
    Kleinberg TT; Tzekov RT; Stein L; Ravi N; Kaushal S
    Surv Ophthalmol; 2011; 56(4):300-23. PubMed ID: 21601902
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The feasibility study of an in situ marine polysaccharide-based hydrogel as the vitreous substitute.
    Jiang X; Peng Y; Yang C; Liu W; Han B
    J Biomed Mater Res A; 2018 Jul; 106(7):1997-2006. PubMed ID: 29569838
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Injectable hydrogels based on the hyaluronic acid and poly (γ-glutamic acid) for controlled protein delivery.
    Ma X; Xu T; Chen W; Qin H; Chi B; Ye Z
    Carbohydr Polym; 2018 Jan; 179():100-109. PubMed ID: 29111032
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of the polycation polyethyleneimine to improve the physical properties of alginate-hyaluronic acid hydrogel during fabrication of tissue repair scaffolds.
    Rajaram A; Schreyer DJ; Chen DX
    J Biomater Sci Polym Ed; 2015; 26(7):433-45. PubMed ID: 25661399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and characterization of novel alginate-based hydrogels as vehicles for bone substitutes.
    Morais DS; Rodrigues MA; Silva TI; Lopes MA; Santos M; Santos JD; Botelho CM
    Carbohydr Polym; 2013 Jun; 95(1):134-42. PubMed ID: 23618249
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and evaluation of hydrogel-composites from methacrylated hyaluronic acid, alginate, and gelatin for tissue engineering.
    Möller L; Krause A; Dahlmann J; Gruh I; Kirschning A; Dräger G
    Int J Artif Organs; 2011 Feb; 34(2):93-102. PubMed ID: 21374568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and characterization of an injectable hyaluronic acid-polyaspartylhydrazide hydrogel.
    Wang Z; Chen Q; Liu M; Tan T; Cao H
    Biomed Mater Eng; 2016; 27(6):589-601. PubMed ID: 28234243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the demixing of hyaluronan and alginate in the gel state.
    Scognamiglio F; Travan A; Cok M; Borgogna M; Marsich E; Paoletti S; Donati I
    Int J Biol Macromol; 2017 Feb; 95():49-53. PubMed ID: 27845225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Age-Related Loss of Human Vitreal Viscoelasticity.
    Schulz A; Wahl S; Rickmann A; Ludwig J; Stanzel BV; von Briesen H; Szurman P
    Transl Vis Sci Technol; 2019 May; 8(3):56. PubMed ID: 31293811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Artificial vitreous replacements.
    Soman N; Banerjee R
    Biomed Mater Eng; 2003; 13(1):59-74. PubMed ID: 12652023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robust alginate/hyaluronic acid thiol-yne click-hydrogel scaffolds with superior mechanical performance and stability for load-bearing soft tissue engineering.
    Pérez-Madrigal MM; Shaw JE; Arno MC; Hoyland JA; Richardson SM; Dove AP
    Biomater Sci; 2020 Jan; 8(1):405-412. PubMed ID: 31729512
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent Progress in Using Biomaterials as Vitreous Substitutes.
    Su X; Tan MJ; Li Z; Wong M; Rajamani L; Lingam G; Loh XJ
    Biomacromolecules; 2015 Oct; 16(10):3093-102. PubMed ID: 26366887
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Desired properties of polymeric hydrogel vitreous substitute.
    Qu S; Tang Y; Ning Z; Zhou Y; Wu H
    Biomed Pharmacother; 2024 Mar; 172():116154. PubMed ID: 38306844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of polymeric component of bioactive glass-based nanocomposite paste on its rheological behaviors and in vitro responses: hyaluronic acid versus sodium alginate.
    Sohrabi M; Hesaraki S; Kazemzadeh A
    J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):561-73. PubMed ID: 24123918
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.