These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 33384908)

  • 1. Utilizing sponge spicules in taxonomic, ecological and environmental reconstructions: a review.
    Łukowiak M
    PeerJ; 2020; 8():e10601. PubMed ID: 33384908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Siliceous spicules and skeleton frameworks in sponges: origin, diversity, ultrastructural patterns, and biological functions.
    Uriz MJ; Turon X; Becerro MA; Agell G
    Microsc Res Tech; 2003 Nov; 62(4):279-99. PubMed ID: 14534903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The terminology of sponge spicules.
    Łukowiak M; Van Soest R; Klautau M; Pérez T; Pisera A; Tabachnick K
    J Morphol; 2022 Dec; 283(12):1517-1545. PubMed ID: 36208470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental factors related to the production of a complex set of spicules in a tropical freshwater sponge.
    Matteuzzo MC; Volkmer-Ribeiro C; Varajão AF; Varajão CA; Alexandre A; Guadagnin DL; Almeida AC
    An Acad Bras Cienc; 2015; 87(4):2013-29. PubMed ID: 26628027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals.
    Sethmann I; Wörheide G
    Micron; 2008; 39(3):209-28. PubMed ID: 17360189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of freshwater sponges spicules deposits in a karstic lake in Brazil.
    Machado VS; Volkmer-Ribeiro C; Iannuzzi R
    Braz J Biol; 2016 Feb; 76(1):36-44. PubMed ID: 26909621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Germanium (Ge) on the silica spicules of the marine sponge Suberites domuncula: Transformation of spicule type.
    Simpson TL; Gil M; Connes R; Diaz JP; Paris J
    J Morphol; 1985 Jan; 183(1):117-128. PubMed ID: 29969865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comments on a skeleton design paradigm for a demosponge.
    Aluma Y; Ilan M; Sherman D
    J Struct Biol; 2011 Sep; 175(3):415-24. PubMed ID: 21605685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A contribution to adequate use of freshwater sponges as a proxy in paleoenvironmental studies.
    Docio L; Parolin M; Pinheiro U
    Zootaxa; 2021 Jan; 4915(4):zootaxa.4915.4.3. PubMed ID: 33756551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-epithelial spicules in a homosclerophorid sponge.
    Maldonado M; Riesgo A
    Cell Tissue Res; 2007 Jun; 328(3):639-50. PubMed ID: 17340151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into the structure and morphogenesis of the giant basal spicule of the glass sponge Monorhaphis chuni.
    Pisera A; Łukowiak M; Masse S; Tabachnick K; Fromont J; Ehrlich H; Bertolino M
    Front Zool; 2021 Nov; 18(1):58. PubMed ID: 34749755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fossil sponge fauna in Lake Baikal region.
    Veynberg E
    Prog Mol Subcell Biol; 2009; 47():185-205. PubMed ID: 19198778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of spicule production in the marine sponge Hymeniacidon perlevis during in vitro cell culture and seasonal development in the field.
    Cao X; Fu W; Yu X; Zhang W
    Cell Tissue Res; 2007 Sep; 329(3):595-608. PubMed ID: 17593397
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spiculogenesis in the siliceous sponge Lubomirskia baicalensis studied with fluorescent staining.
    Annenkov VV; Danilovtseva EN
    J Struct Biol; 2016 Apr; 194(1):29-37. PubMed ID: 26821342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The unique invention of the siliceous sponges: their enzymatically made bio-silica skeleton.
    Müller WE; Wang X; Chen A; Hu S; Gan L; Schröder HC; Schloßmacher U; Wiens M
    Prog Mol Subcell Biol; 2011; 52():251-81. PubMed ID: 21877269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicatein: A Unique Silica-Synthesizing Catalytic Triad Hydrolase From Marine Sponge Skeletons and Its Multiple Applications.
    Shimizu K; Morse DE
    Methods Enzymol; 2018; 605():429-455. PubMed ID: 29909834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward understanding the morphogenesis of siliceous spicules in freshwater sponge: differential mRNA expression of spicule-type-specific silicatein genes in Ephydatia fluviatilis.
    Mohri K; Nakatsukasa M; Masuda Y; Agata K; Funayama N
    Dev Dyn; 2008 Oct; 237(10):3024-39. PubMed ID: 18816843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Late Eocene siliceous sponge fauna of southern Australia: reconstruction based on loose spicules record.
    Łukowiak M
    Zootaxa; 2015 Feb; 3917():1-65. PubMed ID: 25662358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonaceous preservation of Cambrian hexactinellid sponge spicules.
    Harvey TH
    Biol Lett; 2010 Dec; 6(6):834-7. PubMed ID: 20554559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spiculogenesis and biomineralization in early sponge animals.
    Tang Q; Wan B; Yuan X; Muscente AD; Xiao S
    Nat Commun; 2019 Jul; 10(1):3348. PubMed ID: 31350398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.