These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 33385421)
1. Sparse representation of complex-valued fMRI data based on spatiotemporal concatenation of real and imaginary parts. Zhang CY; Lin QH; Kuang LD; Li WX; Gong XF; Calhoun VD J Neurosci Methods; 2021 Mar; 351():109047. PubMed ID: 33385421 [TBL] [Abstract][Full Text] [Related]
2. Shift-Invariant Canonical Polyadic Decomposition of Complex-Valued Multi-Subject fMRI Data With a Phase Sparsity Constraint. Kuang LD; Lin QH; Gong XF; Cong F; Wang YP; Calhoun VD IEEE Trans Med Imaging; 2020 Apr; 39(4):844-853. PubMed ID: 31425066 [TBL] [Abstract][Full Text] [Related]
4. Estimation of complete mutual information exploiting nonlinear magnitude-phase dependence: Application to spatial FNC for complex-valued fMRI data. Li WX; Lin QH; Zhang CY; Han Y; Li HJ; Calhoun VD J Neurosci Methods; 2024 Sep; 409():110207. PubMed ID: 38944128 [TBL] [Abstract][Full Text] [Related]
5. Denoising brain networks using a fixed mathematical phase change in independent component analysis of magnitude-only fMRI data. Zhang CY; Lin QH; Niu YW; Li WX; Gong XF; Cong F; Wang YP; Calhoun VD Hum Brain Mapp; 2023 Dec; 44(17):5712-5728. PubMed ID: 37647216 [TBL] [Abstract][Full Text] [Related]
6. ICA of full complex-valued fMRI data using phase information of spatial maps. Yu MC; Lin QH; Kuang LD; Gong XF; Cong F; Calhoun VD J Neurosci Methods; 2015 Jul; 249():75-91. PubMed ID: 25857613 [TBL] [Abstract][Full Text] [Related]
7. A diffusion-matched principal component analysis (DM-PCA) based two-channel denoising procedure for high-resolution diffusion-weighted MRI. Chen NK; Chang HC; Bilgin A; Bernstein A; Trouard TP PLoS One; 2018; 13(4):e0195952. PubMed ID: 29694400 [TBL] [Abstract][Full Text] [Related]
8. Improved sparse decomposition based on a smoothed L0 norm using a Laplacian kernel to select features from fMRI data. Zhang C; Song S; Wen X; Yao L; Long Z J Neurosci Methods; 2015 Apr; 245():15-24. PubMed ID: 25681758 [TBL] [Abstract][Full Text] [Related]
9. A Novel Sparse Dictionary Learning Separation (SDLS) Model With Adaptive Dictionary Mutual Incoherence Constraint for fMRI Data Analysis. Wang N; Zeng W; Chen D IEEE Trans Biomed Eng; 2016 Nov; 63(11):2376-2389. PubMed ID: 26929024 [TBL] [Abstract][Full Text] [Related]
10. Improved FastICA algorithm in fMRI data analysis using the sparsity property of the sources. Ge R; Wang Y; Zhang J; Yao L; Zhang H; Long Z J Neurosci Methods; 2016 Apr; 263():103-14. PubMed ID: 26880161 [TBL] [Abstract][Full Text] [Related]
11. Bayesian spatiotemporal modeling on complex-valued fMRI signals via kernel convolutions. Yu CH; Prado R; Ombao H; Rowe D Biometrics; 2023 Jun; 79(2):616-628. PubMed ID: 35143043 [TBL] [Abstract][Full Text] [Related]
12. A multiple kernel learning approach to perform classification of groups from complex-valued fMRI data analysis: application to schizophrenia. Castro E; Gómez-Verdejo V; Martínez-Ramón M; Kiehl KA; Calhoun VD Neuroimage; 2014 Feb; 87():1-17. PubMed ID: 24225489 [TBL] [Abstract][Full Text] [Related]
13. Automatic classification and removal of structured physiological noise for resting state functional connectivity MRI analysis. Lee K; Khoo HM; Fourcade C; Gotman J; Grova C Magn Reson Imaging; 2019 May; 58():97-107. PubMed ID: 30695721 [TBL] [Abstract][Full Text] [Related]
14. Non-Local SVD Denoising of MRI Based on Sparse Representations. Leal N; Zurek E; Leal E Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164373 [TBL] [Abstract][Full Text] [Related]
16. Robust brain parcellation using sparse representation on resting-state fMRI. Zhang Y; Caspers S; Fan L; Fan Y; Song M; Liu C; Mo Y; Roski C; Eickhoff S; Amunts K; Jiang T Brain Struct Funct; 2015 Nov; 220(6):3565-79. PubMed ID: 25156576 [TBL] [Abstract][Full Text] [Related]
17. Shared and Subject-Specific Dictionary Learning (ShSSDL) Algorithm for Multisubject fMRI Data Analysis. Iqbal A; Seghouane AK; Adali T IEEE Trans Biomed Eng; 2018 Nov; 65(11):2519-2528. PubMed ID: 29993508 [TBL] [Abstract][Full Text] [Related]
18. Model order effects on ICA of resting-state complex-valued fMRI data: Application to schizophrenia. Kuang LD; Lin QH; Gong XF; Cong F; Sui J; Calhoun VD J Neurosci Methods; 2018 Jul; 304():24-38. PubMed ID: 29673968 [TBL] [Abstract][Full Text] [Related]
19. A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data. Wang Z; Rowe DB; Li X; Brown DA Magn Reson Imaging; 2024 Jun; 109():271-285. PubMed ID: 38537891 [TBL] [Abstract][Full Text] [Related]
20. Sparse dictionary learning for fMRI analysis using autocorrelation maximization. Khalid MU; Shah A; Seghouane AK Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4286-9. PubMed ID: 26737242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]