These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33385421)

  • 41. Sinogram denoising via simultaneous sparse representation in learned dictionaries.
    Karimi D; Ward RK
    Phys Med Biol; 2016 May; 61(9):3536-53. PubMed ID: 27055224
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multiclass fMRI data decoding and visualization using supervised self-organizing maps.
    Hausfeld L; Valente G; Formisano E
    Neuroimage; 2014 Aug; 96():54-66. PubMed ID: 24531045
    [TBL] [Abstract][Full Text] [Related]  

  • 43. SCGICAR: Spatial concatenation based group ICA with reference for fMRI data analysis.
    Shi Y; Zeng W; Wang N
    Comput Methods Programs Biomed; 2017 Sep; 148():137-151. PubMed ID: 28774436
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sparse representation of whole-brain fMRI signals for identification of functional networks.
    Lv J; Jiang X; Li X; Zhu D; Chen H; Zhang T; Zhang S; Hu X; Han J; Huang H; Zhang J; Guo L; Liu T
    Med Image Anal; 2015 Feb; 20(1):112-34. PubMed ID: 25476415
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A semi-blind online dictionary learning approach for fMRI data.
    Long Z; Liu L; Gao Z; Chen M; Yao L
    J Neurosci Methods; 2019 Jul; 323():1-12. PubMed ID: 31085215
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced clinical task-based fMRI metrics through locally low-rank denoising of complex-valued data.
    Meyer NK; Kang D; Black DF; Campeau NG; Welker KM; Gray EM; In MH; Shu Y; Huston Iii J; Bernstein MA; Trzasko JD
    Neuroradiol J; 2023 Jun; 36(3):273-288. PubMed ID: 36063799
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Fast Space-Time Adaptive Processing Algorithm Based on Sparse Bayesian Learning for Airborne Radar.
    Liu C; Wang T; Zhang S; Ren B
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recovering HRFs from overlapping ROIs in fMRI data using thresholding correlations for sparse dictionary learning.
    Shah A; Khalid MU; Seghouane AK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5756-9. PubMed ID: 26737600
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spatial source phase: A new feature for identifying spatial differences based on complex-valued resting-state fMRI data.
    Qiu Y; Lin QH; Kuang LD; Gong XF; Cong F; Wang YP; Calhoun VD
    Hum Brain Mapp; 2019 Jun; 40(9):2662-2676. PubMed ID: 30811773
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bayesian MRI denoising in complex domain.
    Baselice F; Ferraioli G; Pascazio V; Sorriso A
    Magn Reson Imaging; 2017 May; 38():112-122. PubMed ID: 28057481
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Iterative approach of dual regression with a sparse prior enhances the performance of independent component analysis for group functional magnetic resonance imaging (fMRI) data.
    Kim YH; Kim J; Lee JH
    Neuroimage; 2012 Dec; 63(4):1864-89. PubMed ID: 22939873
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Group-sparse representation with dictionary learning for medical image denoising and fusion.
    Li S; Yin H; Fang L
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3450-9. PubMed ID: 22968202
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bayesian methods for FMRI time-series analysis using a nonstationary model for the noise.
    Oikonomou VP; Tripoliti EE; Fotiadis DI
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):664-74. PubMed ID: 20123577
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns.
    De Martino F; Valente G; Staeren N; Ashburner J; Goebel R; Formisano E
    Neuroimage; 2008 Oct; 43(1):44-58. PubMed ID: 18672070
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A data-driven sparse GLM for fMRI analysis using sparse dictionary learning with MDL criterion.
    Lee K; Tak S; Ye JC
    IEEE Trans Med Imaging; 2011 May; 30(5):1076-89. PubMed ID: 21138799
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Signal sampling for efficient sparse representation of resting state FMRI data.
    Ge B; Makkie M; Wang J; Zhao S; Jiang X; Li X; Lv J; Zhang S; Zhang W; Han J; Guo L; Liu T
    Brain Imaging Behav; 2016 Dec; 10(4):1206-1222. PubMed ID: 26646924
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Double temporal sparsity based accelerated reconstruction of compressively sensed resting-state fMRI.
    Aggarwal P; Gupta A
    Comput Biol Med; 2017 Dec; 91():255-266. PubMed ID: 29101794
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sparse representation of complex MRI images.
    Nandakumar HP; Ji J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():398-401. PubMed ID: 19162677
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optical coherence tomography retinal image reconstruction via nonlocal weighted sparse representation.
    Abbasi A; Monadjemi A; Fang L; Rabbani H
    J Biomed Opt; 2018 Mar; 23(3):1-11. PubMed ID: 29575829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.