These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33385421)

  • 61. Analysis of fMRI data by blind separation into independent spatial components.
    McKeown MJ; Makeig S; Brown GG; Jung TP; Kindermann SS; Bell AJ; Sejnowski TJ
    Hum Brain Mapp; 1998; 6(3):160-88. PubMed ID: 9673671
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Voxel selection in FMRI data analysis based on sparse representation.
    Li Y; Namburi P; Yu Z; Guan C; Feng J; Gu Z
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2439-51. PubMed ID: 19567340
    [TBL] [Abstract][Full Text] [Related]  

  • 63. R-fMRI reconstruction from k-t undersampled data using a subject-invariant dictionary model and VB-EM with nested minorization.
    Kulkarni PH; Merchant SN; Awate SP
    Med Image Anal; 2020 Oct; 65():101752. PubMed ID: 32623273
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Whole Brain Myelin Water Mapping in One Minute Using Tensor Dictionary Learning With Low-Rank Plus Sparse Regularization.
    Chen Q; She H; Du YP
    IEEE Trans Med Imaging; 2021 Apr; 40(4):1253-1266. PubMed ID: 33439835
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Low-dose computed tomography image denoising based on joint wavelet and sparse representation.
    Ghadrdan S; Alirezaie J; Dillenseger JL; Babyn P
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3325-8. PubMed ID: 25570702
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A novel subject-wise dictionary learning approach using multi-subject fMRI spatial and temporal components.
    Khalid MU; Nauman MM
    Sci Rep; 2023 Nov; 13(1):20201. PubMed ID: 37980391
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Intersubject MVPD: Empirical comparison of fMRI denoising methods for connectivity analysis.
    Li Y; Saxe R; Anzellotti S
    PLoS One; 2019; 14(9):e0222914. PubMed ID: 31550276
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Functional brain networks reconstruction using group sparsity-regularized learning.
    Zhao Q; Li WXY; Jiang X; Lv J; Lu J; Liu T
    Brain Imaging Behav; 2018 Jun; 12(3):758-770. PubMed ID: 28600738
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Correntropy-Based Logistic Regression With Automatic Relevance Determination for Robust Sparse Brain Activity Decoding.
    Li Y; Chen B; Shi Y; Yoshimura N; Koike Y
    IEEE Trans Biomed Eng; 2023 Aug; 70(8):2416-2429. PubMed ID: 37093731
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Sparse representation and dictionary learning model incorporating group sparsity and incoherence to extract abnormal brain regions associated with schizophrenia.
    Peng P; Ju Y; Zhang Y; Wang K; Jiang S; Wang Y
    IEEE Access; 2020; 8():104396-104406. PubMed ID: 33747675
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Fat/water separation in k-space with real-valued estimates and its combination with POCS.
    Berglund J; Rydén H; Avventi E; Norbeck O; Sprenger T; Skare S
    Magn Reson Med; 2020 Feb; 83(2):653-661. PubMed ID: 31418932
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bayesian reconstruction of multiscale local contrast images from brain activity.
    Song S; Ma X; Zhan Y; Zhan Z; Yao L; Zhang J
    J Neurosci Methods; 2013 Oct; 220(1):39-45. PubMed ID: 23999175
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Identifying Sparse Connectivity Patterns in the brain using resting-state fMRI.
    Eavani H; Satterthwaite TD; Filipovych R; Gur RE; Gur RC; Davatzikos C
    Neuroimage; 2015 Jan; 105():286-99. PubMed ID: 25284301
    [TBL] [Abstract][Full Text] [Related]  

  • 74. False positive control of activated voxels in single fMRI analysis using bootstrap resampling in comparison to spatial smoothing.
    Darki F; Oghabian MA
    Magn Reson Imaging; 2013 Oct; 31(8):1331-7. PubMed ID: 23664823
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Wavelet-domain TI Wiener-like filtering for complex MR data denoising.
    Hu K; Cheng Q; Gao X
    Magn Reson Imaging; 2016 Oct; 34(8):1128-40. PubMed ID: 27238055
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns.
    Yamashita O; Sato MA; Yoshioka T; Tong F; Kamitani Y
    Neuroimage; 2008 Oct; 42(4):1414-29. PubMed ID: 18598768
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Sparse geostatistical analysis in clustering fMRI time series.
    Ye J; Lazar NA; Li Y
    J Neurosci Methods; 2011 Aug; 199(2):336-45. PubMed ID: 21641934
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Integrated Analysis of EEG and fMRI Using Sparsity of Spatial Maps.
    Samadi S; Soltanian-Zadeh H; Jutten C
    Brain Topogr; 2016 Sep; 29(5):661-78. PubMed ID: 27460558
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Efficient de-noising of high-resolution fMRI using local and sub-band information.
    Malekian V; Nasiraei-Moghaddam A; Akhavan A; Hossein-Zadeh GA
    J Neurosci Methods; 2020 Feb; 331():108497. PubMed ID: 31698001
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spatiotemporal nonlinearity in resting-state fMRI of the human brain.
    Xie X; Cao Z; Weng X
    Neuroimage; 2008 May; 40(4):1672-85. PubMed ID: 18316208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.