These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33385510)

  • 1. Experimental and stochastic analysis of lyophilisation.
    Ravnik J; Ramšak M; Zadravec M; Kamenik B; Hriberšek M
    Eur J Pharm Biopharm; 2021 Feb; 159():108-122. PubMed ID: 33385510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate.
    Konstantinidis AK; Kuu W; Otten L; Nail SL; Sever RR
    J Pharm Sci; 2011 Aug; 100(8):3453-3470. PubMed ID: 21465488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Heat Transfer During the Secondary Drying Stage of Freeze Drying: Current Practice and Knowledge Gaps.
    Yoon K; Narsimhan V
    J Pharm Sci; 2022 Feb; 111(2):368-381. PubMed ID: 34571133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid determination of dry layer mass transfer resistance for various pharmaceutical formulations during primary drying using product temperature profiles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2006 Apr; 313(1-2):99-113. PubMed ID: 16513303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights from a Thermodynamic Study and Its Implications on the Freeze-Drying of Pharmaceutical Solutions Containing Water and
    Wang JC; Bruttini R; Liapis AI
    PDA J Pharm Sci Technol; 2019; 73(3):247-259. PubMed ID: 30651336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite Element Method (FEM) Modeling of Freeze-drying: Monitoring Pharmaceutical Product Robustness During Lyophilization.
    Chen X; Sadineni V; Maity M; Quan Y; Enterline M; Mantri RV
    AAPS PharmSciTech; 2015 Dec; 16(6):1317-26. PubMed ID: 25791415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Heat Transfer at the Bottom of Vials for Consistent Freeze Drying with Unidirectional Structured Ice.
    Rosa M; Tiago JM; Singh SK; Geraldes V; Rodrigues MA
    AAPS PharmSciTech; 2016 Oct; 17(5):1049-59. PubMed ID: 26502885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of heat and mass transfer processes for the gap-lyophilization system using the mannitol-trehalose-NaCl formulation.
    Kuu WY; Doty MJ; Nisipeanu E; Rebbeck CL; Cho YK; Smit MH
    J Pharm Sci; 2014 Sep; 103(9):2784-2796. PubMed ID: 24648334
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the design of the stopper including dimension, type, and vent area on lyophilization process.
    Mungikar A; Ludzinski M; Kamat M
    PDA J Pharm Sci Technol; 2010; 64(6):507-16. PubMed ID: 21502061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predictive models of lyophilization process for development, scale-up/tech transfer and manufacturing.
    Zhu T; Moussa EM; Witting M; Zhou D; Sinha K; Hirth M; Gastens M; Shang S; Nere N; Somashekar SC; Alexeenko A; Jameel F
    Eur J Pharm Biopharm; 2018 Jul; 128():363-378. PubMed ID: 29733948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a soft sensor for the fast estimation of dried cake resistance during a freeze-drying cycle.
    Bosca S; Barresi AA; Fissore D
    Int J Pharm; 2013 Jul; 451(1-2):23-33. PubMed ID: 23624086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of manometric temperature measurement (MTM), a process analytical technology tool in freeze drying, part III: heat and mass transfer measurement.
    Tang XC; Nail SL; Pikal MJ
    AAPS PharmSciTech; 2006; 7(4):97. PubMed ID: 17285746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental study of the impact of annealing on ice structure and mass transfer parameters during freeze-drying of a pharmaceutical formulation.
    Chouvenc P; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2006; 60(2):95-103. PubMed ID: 16696192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.
    Rambhatla S; Tchessalov S; Pikal MJ
    AAPS PharmSciTech; 2006 Apr; 7(2):E39. PubMed ID: 16796357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeze-drying of mannitol-trehalose-sodium chloride-based formulations: the impact of annealing on dry layer resistance to mass transfer and cake structure.
    Lu X; Pikal MJ
    Pharm Dev Technol; 2004; 9(1):85-95. PubMed ID: 15000469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeze-drying in protective bags: Characterization of heat and mass transfer.
    Chamberlain R; Schlauersbach J; Erber M
    Eur J Pharm Biopharm; 2020 Sep; 154():309-316. PubMed ID: 32681964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.