BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33385551)

  • 21. Longitudinal ComBat: A method for harmonizing longitudinal multi-scanner imaging data.
    Beer JC; Tustison NJ; Cook PA; Davatzikos C; Sheline YI; Shinohara RT; Linn KA;
    Neuroimage; 2020 Oct; 220():117129. PubMed ID: 32640273
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of traveling-subject and ComBat harmonization methods for assessing structural brain characteristics.
    Maikusa N; Zhu Y; Uematsu A; Yamashita A; Saotome K; Okada N; Kasai K; Okanoya K; Yamashita O; Tanaka SC; Koike S
    Hum Brain Mapp; 2021 Nov; 42(16):5278-5287. PubMed ID: 34402132
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated claustrum segmentation in human brain MRI using deep learning.
    Li H; Menegaux A; Schmitz-Koep B; Neubauer A; Bäuerlein FJB; Shit S; Sorg C; Menze B; Hedderich D
    Hum Brain Mapp; 2021 Dec; 42(18):5862-5872. PubMed ID: 34520080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Whole volume brain extraction for multi-centre, multi-disease FLAIR MRI datasets.
    Khademi A; Reiche B; DiGregorio J; Arezza G; Moody AR
    Magn Reson Imaging; 2020 Feb; 66():116-130. PubMed ID: 31472262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images.
    Chen H; Dou Q; Yu L; Qin J; Heng PA
    Neuroimage; 2018 Apr; 170():446-455. PubMed ID: 28445774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DeepNAT: Deep convolutional neural network for segmenting neuroanatomy.
    Wachinger C; Reuter M; Klein T
    Neuroimage; 2018 Apr; 170():434-445. PubMed ID: 28223187
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Technical note: Progressive deep learning: An accelerated training strategy for medical image segmentation.
    Choi B; Olberg S; Park JC; Kim JS; Shrestha DK; Yaddanapudi S; Furutani KM; Beltran CJ
    Med Phys; 2023 Aug; 50(8):5075-5087. PubMed ID: 36763566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using Deep Learning Algorithms to Automatically Identify the Brain MRI Contrast: Implications for Managing Large Databases.
    Pizarro R; Assemlal HE; De Nigris D; Elliott C; Antel S; Arnold D; Shmuel A
    Neuroinformatics; 2019 Jan; 17(1):115-130. PubMed ID: 29956131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust-Deep: A Method for Increasing Brain Imaging Datasets to Improve Deep Learning Models' Performance and Robustness.
    Sanaat A; Shiri I; Ferdowsi S; Arabi H; Zaidi H
    J Digit Imaging; 2022 Jun; 35(3):469-481. PubMed ID: 35137305
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan.
    Pomponio R; Erus G; Habes M; Doshi J; Srinivasan D; Mamourian E; Bashyam V; Nasrallah IM; Satterthwaite TD; Fan Y; Launer LJ; Masters CL; Maruff P; Zhuo C; Völzke H; Johnson SC; Fripp J; Koutsouleris N; Wolf DH; Gur R; Gur R; Morris J; Albert MS; Grabe HJ; Resnick SM; Bryan RN; Wolk DA; Shinohara RT; Shou H; Davatzikos C
    Neuroimage; 2020 Mar; 208():116450. PubMed ID: 31821869
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bayesian convolutional neural network based MRI brain extraction on nonhuman primates.
    Zhao G; Liu F; Oler JA; Meyerand ME; Kalin NH; Birn RM
    Neuroimage; 2018 Jul; 175():32-44. PubMed ID: 29604454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement.
    Souza R; Lucena O; Garrafa J; Gobbi D; Saluzzi M; Appenzeller S; Rittner L; Frayne R; Lotufo R
    Neuroimage; 2018 Apr; 170():482-494. PubMed ID: 28807870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gaussian smoothing and modified histogram normalization methods to improve neural-biomarker interpretations for dyslexia classification mechanism.
    Usman OL; Muniyandi RC; Omar K; Mohamad M
    PLoS One; 2021; 16(2):e0245579. PubMed ID: 33630876
    [TBL] [Abstract][Full Text] [Related]  

  • 34. nBEST: Deep-learning-based non-human primates Brain Extraction and Segmentation Toolbox across ages, sites and species.
    Zhong T; Wu X; Liang S; Ning Z; Wang L; Niu Y; Yang S; Kang Z; Feng Q; Li G; Zhang Y
    Neuroimage; 2024 Jul; 295():120652. PubMed ID: 38797384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms.
    Tax CM; Grussu F; Kaden E; Ning L; Rudrapatna U; John Evans C; St-Jean S; Leemans A; Koppers S; Merhof D; Ghosh A; Tanno R; Alexander DC; Zappalà S; Charron C; Kusmia S; Linden DE; Jones DK; Veraart J
    Neuroimage; 2019 Jul; 195():285-299. PubMed ID: 30716459
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D whole brain segmentation using spatially localized atlas network tiles.
    Huo Y; Xu Z; Xiong Y; Aboud K; Parvathaneni P; Bao S; Bermudez C; Resnick SM; Cutting LE; Landman BA
    Neuroimage; 2019 Jul; 194():105-119. PubMed ID: 30910724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MRI signatures of brain age and disease over the lifespan based on a deep brain network and 14 468 individuals worldwide.
    Bashyam VM; Erus G; Doshi J; Habes M; Nasrallah I; Truelove-Hill M; Srinivasan D; Mamourian L; Pomponio R; Fan Y; Launer LJ; Masters CL; Maruff P; Zhuo C; Völzke H; Johnson SC; Fripp J; Koutsouleris N; Satterthwaite TD; Wolf D; Gur RE; Gur RC; Morris J; Albert MS; Grabe HJ; Resnick S; Bryan RN; Wolk DA; Shou H; Davatzikos C
    Brain; 2020 Jul; 143(7):2312-2324. PubMed ID: 32591831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Harmonization of diffusion MRI data sets with adaptive dictionary learning.
    St-Jean S; Viergever MA; Leemans A
    Hum Brain Mapp; 2020 Nov; 41(16):4478-4499. PubMed ID: 32851729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Embracing the disharmony in medical imaging: A Simple and effective framework for domain adaptation.
    Wang R; Chaudhari P; Davatzikos C
    Med Image Anal; 2022 Feb; 76():102309. PubMed ID: 34871931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep learning based pipelines for Alzheimer's disease diagnosis: A comparative study and a novel deep-ensemble method.
    Loddo A; Buttau S; Di Ruberto C
    Comput Biol Med; 2022 Feb; 141():105032. PubMed ID: 34838263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.