These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 33385823)

  • 1. Surface modification of a three-dimensional polycaprolactone scaffold by polydopamine, biomineralization, and BMP-2 immobilization for potential bone tissue applications.
    Park J; Lee SJ; Jung TG; Lee JH; Kim WD; Lee JY; Park SA
    Colloids Surf B Biointerfaces; 2021 Mar; 199():111528. PubMed ID: 33385823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth.
    Zhao X; Han Y; Li J; Cai B; Gao H; Feng W; Li S; Liu J; Li D
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():658-666. PubMed ID: 28576035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of mussel-inspired 3D-printed poly (lactic acid) scaffold grafted with bone morphogenetic protein-2 for stimulating osteogenesis.
    Cheng CH; Chen YW; Kai-Xing Lee A; Yao CH; Shie MY
    J Mater Sci Mater Med; 2019 Jun; 30(7):78. PubMed ID: 31222566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mussel-inspired polydopamine-mediated surface modification of freeze-cast poly (ε-caprolactone) scaffolds for bone tissue engineering applications.
    Ghorbani F; Zamanian A; Sahranavard M
    Biomed Tech (Berl); 2020 May; 65(3):273-287. PubMed ID: 31655791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of BMP-2 nanoparticles on the surface of a 3D-printed hydroxyapatite scaffold using an ε-polycaprolactone polymer emulsion coating method for bone tissue engineering.
    Kim BS; Yang SS; Kim CS
    Colloids Surf B Biointerfaces; 2018 Oct; 170():421-429. PubMed ID: 29957531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced osteogenic activity by MC3T3-E1 pre-osteoblasts on chemically surface-modified poly(ε-caprolactone) 3D-printed scaffolds compared to RGD immobilized scaffolds.
    Zamani Y; Mohammadi J; Amoabediny G; Visscher DO; Helder MN; Zandieh-Doulabi B; Klein-Nulend J
    Biomed Mater; 2018 Nov; 14(1):015008. PubMed ID: 30421722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained BMP-2 delivery via alginate microbeads and polydopamine-coated 3D-Printed PCL/β-TCP scaffold enhances bone regeneration in long bone segmental defects.
    Lee S; Kim JH; Kim YH; Hong J; Kim WK; Jin S; Kang BJ
    J Orthop Translat; 2024 Nov; 49():11-22. PubMed ID: 39420946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering.
    Gao X; Song J; Ji P; Zhang X; Li X; Xu X; Wang M; Zhang S; Deng Y; Deng F; Wei S
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3499-515. PubMed ID: 26756224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration.
    Li J; Yao Q; Xu Y; Zhang H; Li LL; Wang L
    Med Sci Monit; 2019 May; 25():4041-4050. PubMed ID: 31147532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ gold nanoparticle growth on polydopamine-coated 3D-printed scaffolds improves osteogenic differentiation for bone tissue engineering applications: in vitro and in vivo studies.
    Lee SJ; Lee HJ; Kim SY; Seok JM; Lee JH; Kim WD; Kwon IK; Park SY; Park SA
    Nanoscale; 2018 Aug; 10(33):15447-15453. PubMed ID: 30091763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics.
    Moghaddaszadeh A; Seddiqi H; Najmoddin N; Abbasi Ravasjani S; Klein-Nulend J
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34670200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal Ion Augmented Mussel Inspired Polydopamine Immobilized 3D Printed Osteoconductive Scaffolds for Accelerated Bone Tissue Regeneration.
    Ghorai SK; Dutta A; Roy T; Guha Ray P; Ganguly D; Ashokkumar M; Dhara S; Chattopadhyay S
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28455-28475. PubMed ID: 35715225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of the 3D-printed polycaprolactone/fish bone extract scaffolds for bone tissue regeneration.
    Heo SY; Ko SC; Oh GW; Kim N; Choi IW; Park WS; Jung WK
    J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):1937-1944. PubMed ID: 30508311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supercritical fluid-assisted controllable fabrication of open and highly interconnected porous scaffolds for bone tissue engineering.
    Tang H; Kankala RK; Wang S; Chen A
    Sci China Life Sci; 2019 Dec; 62(12):1670-1682. PubMed ID: 31025172
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T; Yang X; Qi X; Jiang C
    J Transl Med; 2015 May; 13():152. PubMed ID: 25952675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.
    Kao CT; Lin CC; Chen YW; Yeh CH; Fang HY; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():165-73. PubMed ID: 26249577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-layered polydopamine coatings for the immobilization of growth factors onto highly-interconnected and bimodal PCL/HA-based scaffolds.
    Godoy-Gallardo M; Portolés-Gil N; López-Periago AM; Domingo C; Hosta-Rigau L
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111245. PubMed ID: 32919623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycaprolactone fibrous electrospun scaffolds reinforced with copper doped wollastonite for bone tissue engineering applications.
    Abudhahir M; Saleem A; Paramita P; Kumar SD; Tze-Wen C; Selvamurugan N; Moorthi A
    J Biomed Mater Res B Appl Biomater; 2021 May; 109(5):654-664. PubMed ID: 32935919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.