These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
349 related articles for article (PubMed ID: 33385823)
21. BMP-2-immobilized PCL 3D printing scaffold with a leaf-stacked structure as a physically and biologically activated bone graft. Kim MJ; Park JH; Seok JM; Jung J; Hwang TS; Lee HC; Lee JH; Park SA; Byun JH; Oh SH Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38306679 [TBL] [Abstract][Full Text] [Related]
22. 3D printing of hybrid biomaterials for bone tissue engineering: Calcium-polyphosphate microparticles encapsulated by polycaprolactone. Neufurth M; Wang X; Wang S; Steffen R; Ackermann M; Haep ND; Schröder HC; Müller WEG Acta Biomater; 2017 Dec; 64():377-388. PubMed ID: 28966095 [TBL] [Abstract][Full Text] [Related]
23. Coating 3D Printed Polycaprolactone Scaffolds with Nanocellulose Promotes Growth and Differentiation of Mesenchymal Stem Cells. Rashad A; Mohamed-Ahmed S; Ojansivu M; Berstad K; Yassin MA; Kivijärvi T; Heggset EB; Syverud K; Mustafa K Biomacromolecules; 2018 Nov; 19(11):4307-4319. PubMed ID: 30296827 [TBL] [Abstract][Full Text] [Related]
24. Antimicrobial Activity of 3D-Printed Poly(ε-Caprolactone) (PCL) Composite Scaffolds Presenting Vancomycin-Loaded Polylactic Acid-Glycolic Acid (PLGA) Microspheres. Zhou Z; Yao Q; Li L; Zhang X; Wei B; Yuan L; Wang L Med Sci Monit; 2018 Sep; 24():6934-6945. PubMed ID: 30269152 [TBL] [Abstract][Full Text] [Related]
25. Improving the Osteogenicity of PCL Fiber Substrates by Surface-Immobilization of Bone Morphogenic Protein-2. Gadalla D; Goldstein AS Ann Biomed Eng; 2020 Mar; 48(3):1006-1015. PubMed ID: 31115719 [TBL] [Abstract][Full Text] [Related]
26. Design of a 3D BMP-2-Delivering Tannylated PCL Scaffold and Its Anti-Oxidant, Anti-Inflammatory, and Osteogenic Effects In Vitro. Lee JY; Lim H; Ahn JW; Jang D; Lee SH; Park K; Kim SE Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30445673 [TBL] [Abstract][Full Text] [Related]
27. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating. Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722 [TBL] [Abstract][Full Text] [Related]
28. 3D-printed Mg-incorporated PCL-based scaffolds: A promising approach for bone healing. Dong Q; Zhang M; Zhou X; Shao Y; Li J; Wang L; Chu C; Xue F; Yao Q; Bai J Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112372. PubMed ID: 34579891 [TBL] [Abstract][Full Text] [Related]
29. A xenogeneic extracellular matrix-based 3D printing scaffold modified by ceria nanoparticles for craniomaxillofacial hard tissue regeneration via osteo-immunomodulation. Chen J; Huang Y; Tang H; Qiao X; Sima X; Guo W Biomed Mater; 2024 May; 19(4):. PubMed ID: 38756029 [TBL] [Abstract][Full Text] [Related]
30. Polydopamine-assisted BMP-2-derived peptides immobilization on biomimetic copolymer scaffold for enhanced bone induction in vitro and in vivo. Pan H; Zheng Q; Guo X; Wu Y; Wu B Colloids Surf B Biointerfaces; 2016 Jun; 142():1-9. PubMed ID: 26924362 [TBL] [Abstract][Full Text] [Related]
31. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Park SA; Lee SH; Kim WD Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553 [TBL] [Abstract][Full Text] [Related]
32. Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Ebrahimi Z; Irani S; Ardeshirylajimi A; Seyedjafari E Sci Rep; 2022 Jul; 12(1):12359. PubMed ID: 35859093 [TBL] [Abstract][Full Text] [Related]
33. Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Zhang H; Migneco F; Lin CY; Hollister SJ Tissue Eng Part A; 2010 Nov; 16(11):3441-8. PubMed ID: 20560772 [TBL] [Abstract][Full Text] [Related]
35. Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Ko E; Yang K; Shin J; Cho SW Biomacromolecules; 2013 Sep; 14(9):3202-13. PubMed ID: 23941596 [TBL] [Abstract][Full Text] [Related]
36. Improving osteogenesis of three-dimensional porous scaffold based on mineralized recombinant human-like collagen via mussel-inspired polydopamine and effective immobilization of BMP-2-derived peptide. Zhou J; Guo X; Zheng Q; Wu Y; Cui F; Wu B Colloids Surf B Biointerfaces; 2017 Apr; 152():124-132. PubMed ID: 28103529 [TBL] [Abstract][Full Text] [Related]
37. A 3D-Printed Polycaprolactone/Marine Collagen Scaffold Reinforced with Carbonated Hydroxyapatite from Fish Bones for Bone Regeneration. Kim SC; Heo SY; Oh GW; Yi M; Jung WK Mar Drugs; 2022 May; 20(6):. PubMed ID: 35736147 [TBL] [Abstract][Full Text] [Related]
38. 3D printed hybrid bone constructs of PCL and dental pulp stem cells loaded GelMA. Buyuksungur S; Hasirci V; Hasirci N J Biomed Mater Res A; 2021 Dec; 109(12):2425-2437. PubMed ID: 34033241 [TBL] [Abstract][Full Text] [Related]
39. Biomimetic Hydroxyapatite on 3D-Printed Nanoattapulgite/Polycaprolactone Scaffolds for Bone Regeneration of Rat Cranium Defects. Dai T; Wu X; Liu C; Ni S; Li J; Zhang L; Wang J; Tan Y; Fan S; Zhao H ACS Biomater Sci Eng; 2024 Jan; 10(1):455-467. PubMed ID: 38146624 [TBL] [Abstract][Full Text] [Related]
40. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]