These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 33385931)

  • 41. Automated in vivo enzyme engineering accelerates biocatalyst optimization.
    Orsi E; Schada von Borzyskowski L; Noack S; Nikel PI; Lindner SN
    Nat Commun; 2024 Apr; 15(1):3447. PubMed ID: 38658554
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Recent advances in directed evolution].
    Qu G; Zhao J; Zheng P; Sun J; Sun Z
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):1-11. PubMed ID: 29380566
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Developments in directed evolution for improving enzyme functions.
    Sen S; Venkata Dasu V; Mandal B
    Appl Biochem Biotechnol; 2007 Dec; 143(3):212-23. PubMed ID: 18057449
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey.
    Stucki A; Vallapurackal J; Ward TR; Dittrich PS
    Angew Chem Int Ed Engl; 2021 Nov; 60(46):24368-24387. PubMed ID: 33539653
    [TBL] [Abstract][Full Text] [Related]  

  • 45. UMI-linked consensus sequencing enables phylogenetic analysis of directed evolution.
    Zurek PJ; Knyphausen P; Neufeld K; Pushpanath A; Hollfelder F
    Nat Commun; 2020 Nov; 11(1):6023. PubMed ID: 33243970
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-throughput strategies for the discovery and engineering of enzymes for biocatalysis.
    Jacques P; Béchet M; Bigan M; Caly D; Chataigné G; Coutte F; Flahaut C; Heuson E; Leclère V; Lecouturier D; Phalip V; Ravallec R; Dhulster P; Froidevaux R
    Bioprocess Biosyst Eng; 2017 Feb; 40(2):161-180. PubMed ID: 27738757
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enzyme Catalyst Engineering toward the Integration of Biocatalysis and Chemocatalysis.
    Cao Y; Li X; Ge J
    Trends Biotechnol; 2021 Nov; 39(11):1173-1183. PubMed ID: 33551176
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis.
    Bilal M; Cui J; Iqbal HMN
    Int J Biol Macromol; 2019 Jun; 130():186-196. PubMed ID: 30817963
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessing directed evolution methods for the generation of biosynthetic enzymes with potential in drug biosynthesis.
    Nannemann DP; Birmingham WR; Scism RA; Bachmann BO
    Future Med Chem; 2011 May; 3(7):809-19. PubMed ID: 21644826
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Promises and the Challenges of Biotransformations in Microflow.
    Žnidaršič-Plazl P
    Biotechnol J; 2019 Aug; 14(8):e1800580. PubMed ID: 30945445
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Recent advances in droplet microfluidics for enzyme and cell factory engineering.
    Yang J; Tu R; Yuan H; Wang Q; Zhu L
    Crit Rev Biotechnol; 2021 Nov; 41(7):1023-1045. PubMed ID: 33730939
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Computational Enzyme Design at Zymvol.
    Monza E; Gil V; Lucas MF
    Methods Mol Biol; 2022; 2397():249-259. PubMed ID: 34813068
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Directed evolution of enzymes and pathways for industrial biocatalysis.
    Zhao H; Chockalingam K; Chen Z
    Curr Opin Biotechnol; 2002 Apr; 13(2):104-10. PubMed ID: 11950559
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cell-free Directed Evolution of a Protease in Microdroplets at Ultrahigh Throughput.
    Holstein JM; Gylstorff C; Hollfelder F
    ACS Synth Biol; 2021 Feb; 10(2):252-257. PubMed ID: 33502841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The limits to biocatalysis: pushing the envelope.
    Sheldon RA; Brady D
    Chem Commun (Camb); 2018 Jun; 54(48):6088-6104. PubMed ID: 29770379
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Directed evolution: an approach to engineer enzymes.
    Kaur J; Sharma R
    Crit Rev Biotechnol; 2006; 26(3):165-99. PubMed ID: 16923533
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A paper-based whole-cell screening assay for directed evolution-driven enzyme engineering.
    Gul I; Bogale TF; Chen Y; Yang X; Fang R; Feng J; Gao H; Tang L
    Appl Microbiol Biotechnol; 2020 Jul; 104(13):6013-6022. PubMed ID: 32367311
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Engineering biosynthetic enzymes for industrial natural product synthesis.
    Galanie S; Entwistle D; Lalonde J
    Nat Prod Rep; 2020 Aug; 37(8):1122-1143. PubMed ID: 32364202
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Droplet-based microfluidic high-throughput screening of heterologous enzymes secreted by the yeast Yarrowia lipolytica.
    Beneyton T; Thomas S; Griffiths AD; Nicaud JM; Drevelle A; Rossignol T
    Microb Cell Fact; 2017 Jan; 16(1):18. PubMed ID: 28143479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-throughput droplet-based microfluidics for directed evolution of enzymes.
    Chiu FWY; Stavrakis S
    Electrophoresis; 2019 Nov; 40(21):2860-2872. PubMed ID: 31433062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.