BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 33386071)

  • 1. Potential natural inhibitors of xanthine oxidase and HMG-CoA reductase in cholesterol regulation: in silico analysis.
    Marahatha R; Basnet S; Bhattarai BR; Budhathoki P; Aryal B; Adhikari B; Lamichhane G; Poudel DK; Parajuli N
    BMC Complement Med Ther; 2021 Jan; 21(1):1. PubMed ID: 33386071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-silico Design and ADMET Studies of Natural Compounds as Inhibitors of Xanthine Oxidase (XO) Enzyme.
    Malik N; Dhiman P; Khatkar A
    Curr Drug Metab; 2017; 18(6):577-593. PubMed ID: 28302027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactivity guided fractionation and hypolipidemic property of a novel HMG-CoA reductase inhibitor from Ficus virens Ait.
    Iqbal D; Khan MS; Khan MS; Ahmad S; Hussain MS; Ali M
    Lipids Health Dis; 2015 Mar; 14():15. PubMed ID: 25884722
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Mehmood A; Rehman AU; Ishaq M; Zhao L; Li J; Usman M; Zhao L; Rehman A; Zad OD; Wang C
    Comb Chem High Throughput Screen; 2020; 23(9):917-930. PubMed ID: 32342806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of natural product ingredients as inhibitors of human HMG-CoA reductase through structure-based virtual screening.
    Lin SH; Huang KJ; Weng CF; Shiuan D
    Drug Des Devel Ther; 2015; 9():3313-24. PubMed ID: 26170618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cleroda-4(18),13-dien-15,16-olide as novel xanthine oxidase inhibitors: An integrated in silico and in vitro study.
    Nguyen HT; Vu TY; Dakal TC; Dhabhai B; Nguyen XHQ; Tatipamula VB
    PLoS One; 2021; 16(6):e0253572. PubMed ID: 34191831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations.
    Son M; Baek A; Sakkiah S; Park C; John S; Lee KW
    PLoS One; 2013; 8(12):e83496. PubMed ID: 24386216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xanthine oxidase inhibitory activity of nicotino/isonicotinohydrazides: A systematic approach from in vitro, in silico to in vivo studies.
    Zafar H; Hayat M; Saied S; Khan M; Salar U; Malik R; Choudhary MI; Khan KM
    Bioorg Med Chem; 2017 Apr; 25(8):2351-2371. PubMed ID: 28302506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking.
    Islam B; Sharma C; Adem A; Aburawi E; Ojha S
    Drug Des Devel Ther; 2015; 9():4943-51. PubMed ID: 26357462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring Leishmania donovani 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) as a potential drug target by biochemical, biophysical and inhibition studies.
    Dinesh N; Pallerla DS; Kaur PK; Kishore Babu N; Singh S
    Microb Pathog; 2014 Jan; 66():14-23. PubMed ID: 24239940
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Gul A; Saad SM; Zafar H; Atia-Tul-Wahab ; Khan KM; Choudhary MI
    Med Chem; 2023; 19(4):384-392. PubMed ID: 35726432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining empirical knowledge, in silico molecular docking and ADMET profiling to identify therapeutic phytochemicals from Brucea antidysentrica for acute myeloid leukemia.
    Bultum LE; Tolossa GB; Lee D
    PLoS One; 2022; 17(7):e0270050. PubMed ID: 35895695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action mechanisms and interaction of two key xanthine oxidase inhibitors in galangal: Combination of in vitro and in silico molecular docking studies.
    Ou R; Lin L; Zhao M; Xie Z
    Int J Biol Macromol; 2020 Nov; 162():1526-1535. PubMed ID: 32777423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in-depth view of potential dual effect of thymol in inhibiting xanthine oxidase activity: Electrochemical measurements in combination with four way PARAFAC analysis and molecular docking insights.
    Abbasi S; Gharaghani S; Benvidi A; Rezaeinasab M; Saboury AA
    Int J Biol Macromol; 2018 Nov; 119():1298-1310. PubMed ID: 30096398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular Docking, Synthesis And Biological Evaluation Of Ergosteryl-Ferulate As A Hmg-Coa Reductase Inhibitor.
    Aziz S; Elfahmi -; Soemardji AA; Sukrasno -
    Pak J Pharm Sci; 2020 May; 33(3):997-1003. PubMed ID: 33191223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of novel PI3Kδ inhibitors by docking, ADMET prediction and molecular dynamics simulations.
    Liu YY; Feng XY; Jia WQ; Jing Z; Xu WR; Cheng XC
    Comput Biol Chem; 2019 Feb; 78():190-204. PubMed ID: 30557817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacophore modeling, molecular docking and molecular dynamics studies on natural products database to discover novel skeleton as non-purine xanthine oxidase inhibitors.
    Peng J; Li Y; Zhou Y; Zhang L; Liu X; Zuo Z
    J Recept Signal Transduct Res; 2018 Jun; 38(3):246-255. PubMed ID: 29843539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Analysis and Synthesis of Syringic Acid Derivatives as Xanthine Oxidase Inhibitors.
    Malik N; Khatkar A; Dhiman P
    Med Chem; 2020; 16(5):643-653. PubMed ID: 31584375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the interaction mechanism between luteoloside and xanthine oxidase by multi-spectroscopic and molecular docking methods.
    Chen J; Wang Y; Pan X; Cheng Y; Liu J; Cao X
    J Mol Recognit; 2022 Dec; 35(12):e2985. PubMed ID: 35907782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Xanthine oxidase inhibition study of isolated secondary metabolites from
    Nguyen DK; Liu TW; Hsu SJ; Huynh QT; Thi Duong TL; Chu MH; Wang YH; Vo TH; Lee CK
    Saudi Pharm J; 2024 Apr; 32(4):101980. PubMed ID: 38439949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.