These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 33386098)

  • 1. Selecting machine-learning scoring functions for structure-based virtual screening.
    Ballester PJ
    Drug Discov Today Technol; 2019 Dec; 32-33():81-87. PubMed ID: 33386098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A practical guide to machine-learning scoring for structure-based virtual screening.
    Tran-Nguyen VK; Junaid M; Simeon S; Ballester PJ
    Nat Protoc; 2023 Nov; 18(11):3460-3511. PubMed ID: 37845361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent progress on the prospective application of machine learning to structure-based virtual screening.
    Ghislat G; Rahman T; Ballester PJ
    Curr Opin Chem Biol; 2021 Dec; 65():28-34. PubMed ID: 34052776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beware of the generic machine learning-based scoring functions in structure-based virtual screening.
    Shen C; Hu Y; Wang Z; Zhang X; Pang J; Wang G; Zhong H; Xu L; Cao D; Hou T
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32484221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-Based Virtual Screening: From Classical to Artificial Intelligence.
    Maia EHB; Assis LC; de Oliveira TA; da Silva AM; Taranto AG
    Front Chem; 2020; 8():343. PubMed ID: 32411671
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of compound library size on the performance of scoring functions for structure-based virtual screening.
    Fresnais L; Ballester PJ
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32568385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Machine Learning Techniques to Predict Binding Affinity for Drug Targets: A Study of Cyclin-Dependent Kinase 2.
    Bitencourt-Ferreira G; Duarte da Silva A; Filgueira de Azevedo W
    Curr Med Chem; 2021; 28(2):253-265. PubMed ID: 31729287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery.
    Nayarisseri A; Khandelwal R; Tanwar P; Madhavi M; Sharma D; Thakur G; Speck-Planche A; Singh SK
    Curr Drug Targets; 2021; 22(6):631-655. PubMed ID: 33397265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Target-Specific Machine Learning Scoring Function Improved Structure-Based Virtual Screening Performance for SARS-CoV-2 Drugs Development.
    Tahir Ul Qamar M; Zhu XT; Chen LL; Alhussain L; Alshiekheid MA; Theyab A; Algahtani M
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-based virtual screening for drug discovery: a problem-centric review.
    Cheng T; Li Q; Zhou Z; Wang Y; Bryant SH
    AAPS J; 2012 Mar; 14(1):133-41. PubMed ID: 22281989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DockBench: An Integrated Informatic Platform Bridging the Gap between the Robust Validation of Docking Protocols and Virtual Screening Simulations.
    Cuzzolin A; Sturlese M; Malvacio I; Ciancetta A; Moro S
    Molecules; 2015 May; 20(6):9977-93. PubMed ID: 26035098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topology-Based and Conformation-Based Decoys Database: An Unbiased Online Database for Training and Benchmarking Machine-Learning Scoring Functions.
    Zhang X; Shen C; Wang T; Kang Y; Li D; Pan P; Wang J; Wang G; Deng Y; Xu L; Cao D; Hou T; Wang Z
    J Med Chem; 2023 Jul; 66(13):9174-9183. PubMed ID: 37317043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening.
    Sieg J; Flachsenberg F; Rarey M
    J Chem Inf Model; 2019 Mar; 59(3):947-961. PubMed ID: 30835112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning classification can reduce false positives in structure-based virtual screening.
    Adeshina YO; Deeds EJ; Karanicolas J
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18477-18488. PubMed ID: 32669436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.
    Ma XH; Jia J; Zhu F; Xue Y; Li ZR; Chen YZ
    Comb Chem High Throughput Screen; 2009 May; 12(4):344-57. PubMed ID: 19442064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into Machine Learning-based Approaches for Virtual Screening in Drug Discovery: Existing Strategies and Streamlining Through FP-CADD.
    Hussain W; Rasool N; Khan YD
    Curr Drug Discov Technol; 2021; 18(4):463-472. PubMed ID: 32767944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-Ligand Docking in the Machine-Learning Era.
    Yang C; Chen EA; Zhang Y
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The compromise of virtual screening and its impact on drug discovery.
    Slater O; Kontoyianni M
    Expert Opin Drug Discov; 2019 Jul; 14(7):619-637. PubMed ID: 31025886
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.