These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 33387185)

  • 1. Monophosphoramide derivatives: synthesis and crystal structure, theoretical and experimental studies of their biological effects.
    Gholivand K; Roshanian Z; Rahimzadeh Dashtaki M; Hosseini Z; Ebrahimi Valmoozi AA; Sharifi M; Mohammadpanah F; Rajabi M; Ghadamyari M; Farshadian S; Hasan Sajedi R; Khajeh K; Akbari N
    Mol Divers; 2022 Feb; 26(1):97-112. PubMed ID: 33387185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of acetylcholinesterase from elm left beetle, Xanthogaleruca luteola and QSAR of temephos derivatives against its activity.
    Sharifi M; Ghadamyari M; Gholivand K; Valmoozi AAE; Sajedi RH
    Pestic Biochem Physiol; 2017 Mar; 136():12-22. PubMed ID: 28187825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, crystal structure, cholinesterase inhibitory activity, evaluation of insecticidal activities, and computational studies of new phosphonic acids.
    Gholivand K; Mohammadpanah F; Yaghoubi R; Rahimzadeh Dashtaki M; Pooyan M; Rahmani H; Roshanian Z; Sharifi M; EbrahimiValmoozi AA; Roohzadeh R
    Mol Divers; 2022 Jun; 26(3):1519-1530. PubMed ID: 34351546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, crystal structure, insecticidal activities, molecular docking and QSAR studies of some new phospho guanidines and phospho pyrazines as cholinesterase inhibitors.
    Gholivand K; Mohammadpanah F; Pooyan M; Valmoozi AAE; Sharifi M; Mani-Varnosfaderani A; Hosseini Z
    Pestic Biochem Physiol; 2019 Jun; 157():122-137. PubMed ID: 31153459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular docking and QSAR studies: noncovalent interaction between acephate analogous and the receptor site of human acetylcholinesterase.
    Gholivand K; Valmoozi AA; Mahzouni HR; Ghadimi S; Rahimi R
    J Agric Food Chem; 2013 Jul; 61(28):6776-85. PubMed ID: 23796225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, biological evaluation, QSAR study and molecular docking of novel N-(4-amino carbonylpiperazinyl) (thio)phosphoramide derivatives as cholinesterase inhibitors.
    Gholivand K; Ebrahimi Valmoozi AA; Bonsaii M
    Pestic Biochem Physiol; 2014 Jun; 112():40-50. PubMed ID: 24974116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic Algorithm and Self-Organizing Maps for QSPR Study of Some N-aryl Derivatives as Butyrylcholinesterase Inhibitors.
    Ahmadi S; Ganji S
    Curr Drug Discov Technol; 2016; 13(4):232-253. PubMed ID: 27457492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis, Characterization and Cholinesterase Inhibition Studies of New Arylidene Aminothiazolylethanone Derivatives.
    Channar PA; Shah MS; Saeed A; Khan SU; Larik FA; Shabir G; Iqbal J
    Med Chem; 2017; 13(7):648-653. PubMed ID: 28266279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors:
    Makhaeva GF; Kovaleva NV; Boltneva NP; Rudakova EV; Lushchekina SV; Astakhova TY; Serkov IV; Proshin AN; Radchenko EV; Palyulin VA; Korabecny J; Soukup O; Bachurin SO; Richardson RJ
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico, theoretical biointerface analysis and in vitro kinetic analysis of amine compounds interaction with acetylcholinesterase and butyrylcholinesterase.
    Kandasamy S; Loganathan C; Sakayanathan P; Karthikeyan S; Stephen AD; Marimuthu DK; Ravichandran S; Sivalingam V; Thayumanavan P
    Int J Biol Macromol; 2021 Aug; 185():750-760. PubMed ID: 34216669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flavonols and 4-thioflavonols as potential acetylcholinesterase and butyrylcholinesterase inhibitors: Synthesis, structure-activity relationship and molecular docking studies.
    Mughal EU; Sadiq A; Ashraf J; Zafar MN; Sumrra SH; Tariq R; Mumtaz A; Javid A; Khan BA; Ali A; Javed CO
    Bioorg Chem; 2019 Oct; 91():103124. PubMed ID: 31319297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel biphenyl bis-sulfonamides as acetyl and butyrylcholinesterase inhibitors: Synthesis, biological evaluation and molecular modeling studies.
    Mutahir S; Jończyk J; Bajda M; Khan IU; Khan MA; Ullah N; Ashraf M; Qurat-ul-Ain ; Riaz S; Hussain S; Yar M
    Bioorg Chem; 2016 Feb; 64():13-20. PubMed ID: 26595185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insecticidal, antifeedant and acetylcholinesterase inhibitory activity of sesquiterpenoids derived from eudesmane, their molecular docking and QSAR.
    Evelyn MN; Edgar PN; Soledad QC; Carlos CA; Alejandro MV; Julio AE
    Pestic Biochem Physiol; 2024 May; 201():105841. PubMed ID: 38685257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors.
    Makhaeva GF; Boltneva NP; Lushchekina SV; Serebryakova OG; Stupina TS; Terentiev AA; Serkov IV; Proshin AN; Bachurin SO; Richardson RJ
    Bioorg Med Chem; 2016 Mar; 24(5):1050-62. PubMed ID: 26827140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis and biological evaluation of benzofuran appended benzothiazepine derivatives as inhibitors of butyrylcholinesterase and antimicrobial agents.
    Mostofi M; Mohammadi Ziarani G; Lashgari N
    Bioorg Med Chem; 2018 Jul; 26(12):3076-3095. PubMed ID: 29866481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, structural characterization, docking, lipophilicity and cytotoxicity of 1-[(1R)-1-(6-fluoro-1,3-benzothiazol-2-yl)ethyl]-3-alkyl carbamates, novel acetylcholinesterase and butyrylcholinesterase pseudo-irreversible inhibitors.
    Pejchal V; Štěpánková Š; Pejchalová M; Královec K; Havelek R; Růžičková Z; Ajani H; Lo R; Lepšík M
    Bioorg Med Chem; 2016 Apr; 24(7):1560-72. PubMed ID: 26947959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined molecular modeling and cholinesterase inhibition studies on some natural and semisynthetic O-alkylcoumarin derivatives.
    Orhan IE; Senol Deniz FS; Salmas RE; Durdagi S; Epifano F; Genovese S; Fiorito S
    Bioorg Chem; 2019 Mar; 84():355-362. PubMed ID: 30530106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modeling and in vitro approaches towards cholinesterase inhibitory effect of some natural xanthohumol, naringenin, and acyl phloroglucinol derivatives.
    Orhan IE; Jedrejek D; Senol FS; Salmas RE; Durdagi S; Kowalska I; Pecio L; Oleszek W
    Phytomedicine; 2018 Mar; 42():25-33. PubMed ID: 29655693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Novel Dual Acetyl- and Butyrylcholinesterase Inhibitors as Potential Anti-Alzheimer's Disease Agents Using Pharmacophore, 3D-QSAR, and Molecular Docking Approaches.
    Pang X; Fu H; Yang S; Wang L; Liu AL; Wu S; Du GH
    Molecules; 2017 Jul; 22(8):. PubMed ID: 28933746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and synthesis of some new carboxamide and propanamide derivatives bearing phenylpyridazine as a core ring and the investigation of their inhibitory potential on in-vitro acetylcholinesterase and butyrylcholinesterase.
    Kilic B; Gulcan HO; Aksakal F; Ercetin T; Oruklu N; Umit Bagriacik E; Dogruer DS
    Bioorg Chem; 2018 Sep; 79():235-249. PubMed ID: 29775949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.