Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

867 related articles for article (PubMed ID: 33387492)

  • 1. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study.
    Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J
    Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PPsNet: An improved deep learning model for microsatellite instability high prediction in colorectal cancer from whole slide images.
    Lou J; Xu J; Zhang Y; Sun Y; Fang A; Liu J; Mur LAJ; Ji B
    Comput Methods Programs Biomed; 2022 Oct; 225():107095. PubMed ID: 36057226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning-based methods for classification of microsatellite instability in endometrial cancer from HE-stained pathological images.
    Zhang Y; Chen S; Wang Y; Li J; Xu K; Chen J; Zhao J
    J Cancer Res Clin Oncol; 2023 Sep; 149(11):8877-8888. PubMed ID: 37150803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical actionability of triaging DNA mismatch repair deficient colorectal cancer from biopsy samples using deep learning.
    Jiang W; Mei WJ; Xu SY; Ling YH; Li WR; Kuang JB; Li HS; Hui H; Li JB; Cai MY; Pan ZZ; Zhang HZ; Li L; Ding PR
    EBioMedicine; 2022 Jul; 81():104120. PubMed ID: 35753152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility of deep learning-based fully automated classification of microsatellite instability in tissue slides of colorectal cancer.
    Lee SH; Song IH; Jang HJ
    Int J Cancer; 2021 Aug; 149(3):728-740. PubMed ID: 33851412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical-Grade Detection of Microsatellite Instability in Colorectal Tumors by Deep Learning.
    Echle A; Grabsch HI; Quirke P; van den Brandt PA; West NP; Hutchins GGA; Heij LR; Tan X; Richman SD; Krause J; Alwers E; Jenniskens J; Offermans K; Gray R; Brenner H; Chang-Claude J; Trautwein C; Pearson AT; Boor P; Luedde T; Gaisa NT; Hoffmeister M; Kather JN
    Gastroenterology; 2020 Oct; 159(4):1406-1416.e11. PubMed ID: 32562722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study.
    Bilal M; Raza SEA; Azam A; Graham S; Ilyas M; Cree IA; Snead D; Minhas F; Rajpoot NM
    Lancet Digit Health; 2021 Dec; 3(12):e763-e772. PubMed ID: 34686474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer.
    Song JH; Hong Y; Kim ER; Kim SH; Sohn I
    J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a deep learning-based microsatellite instability predictor from prostate cancer whole-slide images.
    Hu Q; Rizvi AA; Schau G; Ingale K; Muller Y; Baits R; Pretzer S; BenTaieb A; Gordhamer A; Nussenzveig R; Cole A; Leavitt MO; Jones RD; Joshi RP; Beaubier N; Stumpe MC; Nagpal K
    NPJ Precis Oncol; 2024 Apr; 8(1):88. PubMed ID: 38594360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting microsatellite instability and key biomarkers in colorectal cancer from H&E-stained images: achieving state-of-the-art predictive performance with fewer data using Swin Transformer.
    Guo B; Li X; Yang M; Jonnagaddala J; Zhang H; Xu XS
    J Pathol Clin Res; 2023 May; 9(3):223-235. PubMed ID: 36723384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning radiopathomics based on preoperative US images and biopsy whole slide images can distinguish between luminal and non-luminal tumors in early-stage breast cancers.
    Huang Y; Yao Z; Li L; Mao R; Huang W; Hu Z; Hu Y; Wang Y; Guo R; Tang X; Yang L; Wang Y; Luo R; Yu J; Zhou J
    EBioMedicine; 2023 Aug; 94():104706. PubMed ID: 37478528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of artificial intelligence-based prescreening of large-bowel biopsies taken in the UK and Portugal: a retrospective cohort study.
    Bilal M; Tsang YW; Ali M; Graham S; Hero E; Wahab N; Dodd K; Sahota H; Wu S; Lu W; Jahanifar M; Robinson A; Azam A; Benes K; Nimir M; Hewitt K; Bhalerao A; Eldaly H; Raza SEA; Gopalakrishnan K; Minhas F; Snead D; Rajpoot N
    Lancet Digit Health; 2023 Nov; 5(11):e786-e797. PubMed ID: 37890902
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpretable tumor differentiation grade and microsatellite instability recognition in gastric cancer using deep learning.
    Su F; Li J; Zhao X; Wang B; Hu Y; Sun Y; Ji J
    Lab Invest; 2022 Jun; 102(6):641-649. PubMed ID: 35177797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attention-based multiple instance learning with self-supervision to predict microsatellite instability in colorectal cancer from histology whole-slide images.
    Leiby JS; Hao J; Kang GH; Park JW; Kim D
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3068-3071. PubMed ID: 36085965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Lymph Node Metastasis From Primary Cervical Squamous Cell Carcinoma Based on Deep Learning in Histopathologic Images.
    Guo Q; Qu L; Zhu J; Li H; Wu Y; Wang S; Yu M; Wu J; Wen H; Ju X; Wang X; Bi R; Shi Y; Wu X
    Mod Pathol; 2023 Dec; 36(12):100316. PubMed ID: 37634868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The value of single-source dual-energy CT imaging for discriminating microsatellite instability from microsatellite stability human colorectal cancer.
    Wu J; Lv Y; Wang N; Zhao Y; Zhang P; Liu Y; Chen A; Li J; Li X; Guo Y; Wu T; Liu A
    Eur Radiol; 2019 Jul; 29(7):3782-3790. PubMed ID: 30903331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer.
    Cao R; Yang F; Ma SC; Liu L; Zhao Y; Li Y; Wu DH; Wang T; Lu WJ; Cai WJ; Zhu HB; Guo XJ; Lu YW; Kuang JJ; Huan WJ; Tang WM; Huang K; Huang J; Yao J; Dong ZY
    Theranostics; 2020; 10(24):11080-11091. PubMed ID: 33042271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A promising deep learning-assistive algorithm for histopathological screening of colorectal cancer.
    Ho C; Zhao Z; Chen XF; Sauer J; Saraf SA; Jialdasani R; Taghipour K; Sathe A; Khor LY; Lim KH; Leow WQ
    Sci Rep; 2022 Feb; 12(1):2222. PubMed ID: 35140318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning detects genetic alterations in cancer histology generated by adversarial networks.
    Krause J; Grabsch HI; Kloor M; Jendrusch M; Echle A; Buelow RD; Boor P; Luedde T; Brinker TJ; Trautwein C; Pearson AT; Quirke P; Jenniskens J; Offermans K; van den Brandt PA; Kather JN
    J Pathol; 2021 May; 254(1):70-79. PubMed ID: 33565124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 44.