BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 33387540)

  • 1. Insights into the microbial degradation and catalytic mechanisms of chlorpyrifos.
    Huang Y; Zhang W; Pang S; Chen J; Bhatt P; Mishra S; Chen S
    Environ Res; 2021 Mar; 194():110660. PubMed ID: 33387540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids.
    Zhan H; Huang Y; Lin Z; Bhatt P; Chen S
    Environ Res; 2020 Mar; 182():109138. PubMed ID: 32069744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the microbial degradation and biochemical mechanisms of carbamates.
    Mishra S; Pang S; Zhang W; Lin Z; Bhatt P; Chen S
    Chemosphere; 2021 Sep; 279():130500. PubMed ID: 33892453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmental Distribution, Metabolic Fate, and Degradation Mechanism of Chlorpyrifos: Recent and Future Perspectives.
    Bhende RS; Jhariya U; Srivastava S; Bombaywala S; Das S; Dafale NA
    Appl Biochem Biotechnol; 2022 May; 194(5):2301-2335. PubMed ID: 35013924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of Ganoderma sp. JAS4 in bioremediation of chlorpyrifos and its hydrolyzing metabolite TCP from agricultural soil.
    Silambarasan S; Abraham J
    J Basic Microbiol; 2014 Jan; 54(1):44-55. PubMed ID: 23553803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel degradation pathways for Chlorpyrifos and 3, 5, 6-Trichloro-2-pyridinol degradation by bacterial strain Bacillus thuringiensis MB497 isolated from agricultural fields of Mianwali, Pakistan.
    Ambreen S; Yasmin A
    Pestic Biochem Physiol; 2021 Feb; 172():104750. PubMed ID: 33518043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on the microbial degradation of chlorpyrifos and its metabolite TCP.
    Bose S; Kumar PS; Vo DN
    Chemosphere; 2021 Nov; 283():131447. PubMed ID: 34467951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Gordonia sp JAAS1 in biodegradation of chlorpyrifos and its hydrolysing metabolite 3,5,6-trichloro-2-pyridinol.
    Abraham J; Shanker A; Silambarasan S
    Lett Appl Microbiol; 2013 Dec; 57(6):510-6. PubMed ID: 23909785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Environmental fate of chlorpyrifos.
    Racke KD
    Rev Environ Contam Toxicol; 1993; 131():1-150. PubMed ID: 7678349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation mechanism of chlorpyrifos by Bacillus sp. H27: Degradation enzymes, products, pathways and whole genome sequencing analysis.
    Liu C; Zhao C; Wang L; Du X; Zhu L; Wang J; Mo Kim Y; Wang J
    Environ Res; 2023 Dec; 239(Pt 1):117315. PubMed ID: 37805180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of Bacillus thuringiensis supernatant from a fermentation process to improve bioremediation of chlorpyrifos in contaminated soils.
    Aceves-Diez AE; Estrada-Castañeda KJ; Castañeda-Sandoval LM
    J Environ Manage; 2015 Jul; 157():213-9. PubMed ID: 25910975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotransformation of chlorpyrifos and endosulfan by bacteria and fungi.
    Supreeth M; Raju NS
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):5961-5971. PubMed ID: 28702792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol using a novel bacterium Ochrobactrum sp. JAS2: A proposal of its metabolic pathway.
    Abraham J; Silambarasan S
    Pestic Biochem Physiol; 2016 Jan; 126():13-21. PubMed ID: 26778429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial degradation of chlorpyrifos in liquid media and soil.
    Chishti Z; Hussain S; Arshad KR; Khalid A; Arshad M
    J Environ Manage; 2013 Jan; 114():372-80. PubMed ID: 23176983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of chlorpyrifos pollution from contaminated environment - A review on operating variables and mechanism.
    Bosu S; Rajamohan N; Al Salti S; Rajasimman M; Das P
    Environ Res; 2024 May; 248():118212. PubMed ID: 38272293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of organophosphorus insecticides from environment: Residual detoxification by bioweapon catalytic scavengers.
    Paidi MK; Satapute P; Haider MS; Udikeri SS; Ramachandra YL; Vo DN; Govarthanan M; Jogaiah S
    Environ Res; 2021 Sep; 200():111368. PubMed ID: 34081974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pollution status and bioremediation of chlorpyrifos in environmental matrices by the application of bacterial communities: A review.
    Dar MA; Kaushik G; Villarreal-Chiu JF
    J Environ Manage; 2019 Jun; 239():124-136. PubMed ID: 30897478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Toxicity and Degradation Mechanisms of Imidacloprid Via Physicochemical and Microbial Approaches.
    Pang S; Lin Z; Zhang Y; Zhang W; Alansary N; Mishra S; Bhatt P; Chen S
    Toxics; 2020 Sep; 8(3):. PubMed ID: 32882955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights Into the Microbial Degradation and Biochemical Mechanisms of Neonicotinoids.
    Pang S; Lin Z; Zhang W; Mishra S; Bhatt P; Chen S
    Front Microbiol; 2020; 11():868. PubMed ID: 32508767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity assessment of chlorpyrifos on different organs of rat: exploitation of microbial-based enzymatic system for neutralization.
    Sharma S; Singh P; Chadha P; Saini HS
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29649-29659. PubMed ID: 31401803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.