These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33387662)

  • 1. Mini Review: Central Organization of Airway Afferent Nerve Circuits.
    Behrens R; McGovern AE; Farrell MJ; Moe AAK; Mazzone SB
    Neurosci Lett; 2021 Jan; 744():135604. PubMed ID: 33387662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Descending Modulation of Laryngeal Vagal Sensory Processing in the Brainstem Orchestrated by the Submedius Thalamic Nucleus.
    Mazzone SB; Bautista TG; Verberne AJM; Trewella MW; Farrell MJ; McGovern AE
    J Neurosci; 2020 Dec; 40(49):9426-9439. PubMed ID: 33115928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoding of the cough reflex.
    Canning BJ
    Pulm Pharmacol Ther; 2007; 20(4):396-401. PubMed ID: 17355911
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for multiple bulbar and higher brain circuits processing sensory inputs from the respiratory system in humans.
    Farrell MJ; Bautista TG; Liang E; Azzollini D; Egan GF; Mazzone SB
    J Physiol; 2020 Dec; 598(24):5771-5787. PubMed ID: 33029786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Central pathways of pulmonary and lower airway vagal afferents.
    Kubin L; Alheid GF; Zuperku EJ; McCrimmon DR
    J Appl Physiol (1985); 2006 Aug; 101(2):618-27. PubMed ID: 16645192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cardiovascular autonomic effects of transcutaneous auricular nerve stimulation via the tragus in the rat involve spinal cervical sensory afferent pathways.
    Mahadi KM; Lall VK; Deuchars SA; Deuchars J
    Brain Stimul; 2019; 12(5):1151-1158. PubMed ID: 31129152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of vagal brainstem circuits in the control of gastric function.
    Browning KN; Travagli RA
    Neurogastroenterol Motil; 2010 Nov; 22(11):1154-63. PubMed ID: 20804520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.
    Beaumont E; Campbell RP; Andresen MC; Scofield S; Singh K; Libbus I; KenKnight BH; Snyder L; Cantrell N
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H354-H367. PubMed ID: 28476920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reflex regulation of breathing by the paratrigeminal nucleus via multiple bulbar circuits.
    Driessen AK; Farrell MJ; Dutschmann M; Stanic D; McGovern AE; Mazzone SB
    Brain Struct Funct; 2018 Dec; 223(9):4005-4022. PubMed ID: 30116890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity of brainstem mechanisms of cough.
    Bonham AC; Sekizawa S; Chen CY; Joad JP
    Respir Physiol Neurobiol; 2006 Jul; 152(3):312-9. PubMed ID: 16554189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct brainstem and forebrain circuits receiving tracheal sensory neuron inputs revealed using a novel conditional anterograde transsynaptic viral tracing system.
    McGovern AE; Driessen AK; Simmons DG; Powell J; Davis-Poynter N; Farrell MJ; Mazzone SB
    J Neurosci; 2015 May; 35(18):7041-55. PubMed ID: 25948256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Central connections of the sensory and motor nuclei of the vagus nerve.
    Sawchenko PE
    J Auton Nerv Syst; 1983 Oct; 9(1):13-26. PubMed ID: 6319474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polysialic Acid Regulates Sympathetic Outflow by Facilitating Information Transfer within the Nucleus of the Solitary Tract.
    Bokiniec P; Shahbazian S; McDougall SJ; Berning BA; Cheng D; Llewellyn-Smith IJ; Burke PGR; McMullan S; Mühlenhoff M; Hildebrandt H; Braet F; Connor M; Packer NH; Goodchild AK
    J Neurosci; 2017 Jul; 37(27):6558-6574. PubMed ID: 28576943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vagal afferent stimulation activates astrocytes in the nucleus of the solitary tract via AMPA receptors: evidence of an atypical neural-glial interaction in the brainstem.
    McDougal DH; Hermann GE; Rogers RC
    J Neurosci; 2011 Sep; 31(39):14037-45. PubMed ID: 21957265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vagal Afferent Innervation of the Airways in Health and Disease.
    Mazzone SB; Undem BJ
    Physiol Rev; 2016 Jul; 96(3):975-1024. PubMed ID: 27279650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brainstem respiratory networks: building blocks and microcircuits.
    Smith JC; Abdala AP; Borgmann A; Rybak IA; Paton JF
    Trends Neurosci; 2013 Mar; 36(3):152-62. PubMed ID: 23254296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensive Inhibitory Gating of Viscerosensory Signals by a Sparse Network of Somatostatin Neurons.
    Thek KR; Ong SJM; Carter DC; Bassi JK; Allen AM; McDougall SJ
    J Neurosci; 2019 Oct; 39(41):8038-8050. PubMed ID: 31471471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Afferent vagal C fibre innervation of the lungs and airways and its functional significance.
    Coleridge JC; Coleridge HM
    Rev Physiol Biochem Pharmacol; 1984; 99():1-110. PubMed ID: 6695127
    [No Abstract]   [Full Text] [Related]  

  • 19. Brainstem circuits regulating gastric function.
    Travagli RA; Hermann GE; Browning KN; Rogers RC
    Annu Rev Physiol; 2006; 68():279-305. PubMed ID: 16460274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of vagal afferent projections circumflex to the obex in the embryonic chick brainstem visualized with voltage-sensitive dye recording.
    Momose-Sato Y; Kinoshita M; Sato K
    Neuroscience; 2007 Aug; 148(1):140-50. PubMed ID: 17629626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.