BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33387720)

  • 1. Fluorescent detection of dipicolinic acid as a biomarker in bacterial spores employing terbium ion-coordinated magnetite nanoparticles.
    Koo TM; Ko MJ; Park BC; Kim MS; Kim YK
    J Hazard Mater; 2021 Apr; 408():124870. PubMed ID: 33387720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-emission of silicon nanoparticles encapsulated lanthanide-based metal-organic frameworks for ratiometric fluorescence detection of bacterial spores.
    Yang D; Mei S; Wen Z; Wei X; Cui Z; Yang B; Wei C; Qiu Y; Li M; Li H; Zhang W; Xie F; Wang L; Guo R
    Mikrochim Acta; 2020 Nov; 187(12):666. PubMed ID: 33206253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terbium Functionalized Micelle Nanoprobe for Ratiometric Fluorescence Detection of Anthrax Spore Biomarker.
    Luan K; Meng R; Shan C; Cao J; Jia J; Liu W; Tang Y
    Anal Chem; 2018 Mar; 90(5):3600-3607. PubMed ID: 29385798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent silica nanoparticles as nano-chemosensors for the sequential detection of Pb
    Cetinkaya YN; Bulut O; Oktem HA; Yilmaz MD
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123222. PubMed ID: 37542871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework.
    Bhardwaj N; Bhardwaj S; Mehta J; Kim KH; Deep A
    Biosens Bioelectron; 2016 Dec; 86():799-804. PubMed ID: 27479046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly selective and multicolor ultrasensitive assay of dipicolinic acid: The integration of terbium(III) and gold nanocluster.
    Bi N; Zhang YH; Hu MH; Xu J; Song W; Gou J; Li YX; Jia L
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121777. PubMed ID: 36058171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dipicolinic acid (DPA) assay revisited and appraised for spore detection.
    Hindle AA; Hall EA
    Analyst; 1999 Nov; 124(11):1599-604. PubMed ID: 10746319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic separation-enhanced photoluminescence detection of dipicolinic acid and quenching detection of Cu(II) ions.
    Kim T; Jeon H; Lee JR; Kim D
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123501. PubMed ID: 37839210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbing Tandem Energy Transfer in Luminescent Heterobinuclear Lanthanide Coordination Polymer Nanoparticles Enables Real-Time Monitoring of Release of the Anthrax Biomarker from Bacterial Spores.
    Gao N; Zhang Y; Huang P; Xiang Z; Wu FY; Mao L
    Anal Chem; 2018 Jun; 90(11):7004-7011. PubMed ID: 29701058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite nanoparticle based fluorometric turn-on determination of dipicolinic acid, a biomarker of bacterial spores.
    Li Y; Li X; Wang D; Shen C; Yang M
    Mikrochim Acta; 2018 Aug; 185(9):435. PubMed ID: 30167800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles.
    Donmez M; Yilmaz MD; Kilbas B
    J Hazard Mater; 2017 Feb; 324(Pt B):593-598. PubMed ID: 27852519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ratiometric fluorescent probe for determination of the anthrax biomarker 2,6-pyridinedicarboxylic acid based on a terbium(III)- functionalized UIO-67 metal-organic framework.
    Zhang X; Zhang W; Li G; Liu Q; Xu Y; Liu X
    Mikrochim Acta; 2020 Jan; 187(2):122. PubMed ID: 31932902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual lanthanide-doped complexes: the development of a time-resolved ratiometric fluorescent probe for anthrax biomarker and a paper-based visual sensor.
    Wang QX; Xue SF; Chen ZH; Ma SH; Zhang S; Shi G; Zhang M
    Biosens Bioelectron; 2017 Aug; 94():388-393. PubMed ID: 28324858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of 2, 6-dipicolinic acid as an Anthrax biomarker based on the enhancement of copper nanocluster fluorescence by reversible aggregation-induced emission.
    Ma F; Deng L; Wang T; Zhang A; Yang M; Li X; Chen X
    Mikrochim Acta; 2023 Jul; 190(8):291. PubMed ID: 37458835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthrax biomarker: An ultrasensitive fluorescent ratiometry of dipicolinic acid by using terbium(III)-modified carbon dots.
    Liu ML; Chen BB; He JH; Li CM; Li YF; Huang CZ
    Talanta; 2019 Jan; 191():443-448. PubMed ID: 30262082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rare-Earth hydroxide nanosheets based ratio fluorescence nanoprobe for dipicolinic acid detection.
    Li J; Gu Q; Heng H; Wang Z; Jin H; He J
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 May; 272():120969. PubMed ID: 35158139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile ratiometric fluorapatite nanoprobes for rapid and sensitive bacterial spore biomarker detection.
    Xu J; Shen X; Jia L; Zhang M; Zhou T; Wei Y
    Biosens Bioelectron; 2017 Jan; 87():991-997. PubMed ID: 27686603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework.
    Zhang Y; Li B; Ma H; Zhang L; Zheng Y
    Biosens Bioelectron; 2016 Nov; 85():287-293. PubMed ID: 27183278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid.
    Li X; Luo J; Jiang X; Yang M; Rasooly A
    Mikrochim Acta; 2021 Jan; 188(1):26. PubMed ID: 33404771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratiometric luminescent detection of bacterial spores with terbium chelated semiconducting polymer dots.
    Li Q; Sun K; Chang K; Yu J; Chiu DT; Wu C; Qin W
    Anal Chem; 2013 Oct; 85(19):9087-91. PubMed ID: 23964730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.