BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 33387833)

  • 1. Microanalytical flow system for the simultaneous determination of acetic acid and free sulfur dioxide in wines.
    Giménez-Gómez P; Gutiérrez-Capitán M; Ríos JM; Capdevila F; Puig-Pujol A; Jiménez-Jorquera C
    Food Chem; 2021 Jun; 346():128891. PubMed ID: 33387833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of free and total sulfur dioxide in wine by using a gas-diffusion analytical system with pH detection.
    Giménez-Gómez P; Gutiérrez-Capitán M; Puig-Pujol A; Capdevila F; Muñoz S; Tobeña A; Miró A; Jiménez-Jorquera C
    Food Chem; 2017 Aug; 228():518-525. PubMed ID: 28317758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of acetic acid, ethanol, and SO(2) on the removal of volatile acidity from acidic wines by two Saccharomyces cerevisiae commercial strains.
    Vilela-Moura A; Schuller D; Mendes-Faia A; Côrte-Real M
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1317-26. PubMed ID: 20390413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extraction and quantification of SO2 content in wines using a hollow fiber contactor.
    Plaza A; Romero J; Silva W; Morales E; Torres A; Aguirre MJ
    Food Sci Technol Int; 2014 Oct; 20(7):501-10. PubMed ID: 23897976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-line pervaporation-capillary electrophoresis for the determination of volatile acidity and free sulfur dioxide in wines.
    Ruiz-Jiménez J; Luque de Castro MD
    Electrophoresis; 2005 Jun; 26(11):2231-8. PubMed ID: 15880611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High pressure treatments accelerate changes in volatile composition of sulphur dioxide-free wine during bottle storage.
    Santos MC; Nunes C; Rocha MA; Rodrigues A; Rocha SM; Saraiva JA; Coimbra MA
    Food Chem; 2015 Dec; 188():406-14. PubMed ID: 26041211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a gas diffusion multicommuted flow injection system for the determination of sulfur dioxide in wines, comparing malachite green and pararosaniline chemistries.
    Oliveira SM; Lopes TI; Tóth IV; Rangel AO
    J Agric Food Chem; 2009 May; 57(9):3415-22. PubMed ID: 19309149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hydroxytyrosol on quality of sulfur dioxide-free red wine.
    Raposo R; Ruiz-Moreno MJ; Garde-Cerdán T; Puertas B; Moreno-Rojas JM; Gonzalo-Diago A; Guerrero RF; Ortiz V; Cantos-Villar E
    Food Chem; 2016 Feb; 192():25-33. PubMed ID: 26304316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of SO
    Arapitsas P; Guella G; Mattivi F
    Sci Rep; 2018 Jan; 8(1):858. PubMed ID: 29339827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective methods for polyphenols and sulphur dioxide determination in wines.
    García-Guzmán JJ; Hernández-Artiga MP; Palacios-Ponce de León L; Bellido-Milla D
    Food Chem; 2015 Sep; 182():47-54. PubMed ID: 25842307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of sulfur dioxide in wines and beverages by flow injection analysis with reductive amperometric detection and electrolytic cleanup.
    Cardwell TJ; Cattrall RW; Chen GN; Scollary GR; Hamilton IA
    J AOAC Int; 1993; 76(6):1389-93. PubMed ID: 8286980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical sensor for sulfur dioxide determination in wines.
    Silva KR; Raimundo IM; Gimenez IF; Alves OL
    J Agric Food Chem; 2006 Nov; 54(23):8697-701. PubMed ID: 17090109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct quantification of sulfur dioxide in wine by Surface Enhanced Raman Spectroscopy.
    Mandrile L; Cagnasso I; Berta L; Giovannozzi AM; Petrozziello M; Pellegrino F; Asproudi A; Durbiano F; Rossi AM
    Food Chem; 2020 Oct; 326():127009. PubMed ID: 32438230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of sulfur dioxide in grapes and wines.
    Ough CS
    J Assoc Off Anal Chem; 1986; 69(1):5-7. PubMed ID: 3949701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the sotolon content of dry white wines during barrel and bottle aging.
    Lavigne V; Pons A; Darriet P; Dubourdieu D
    J Agric Food Chem; 2008 Apr; 56(8):2688-93. PubMed ID: 18373351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of refermentation conditions and micro-oxygenation on the reduction of volatile acidity by commercial S. cerevisiae strains and their impact on the aromatic profile of wines.
    Vilela-Moura A; Schuller D; Falco V; Mendes-Faia A; Côrte-Real M
    Int J Food Microbiol; 2010 Jul; 141(3):165-72. PubMed ID: 20626097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of sulfur dioxide in wine using headspace gas chromatography and electron capture detection.
    Aberl A; Coelhan M
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(2):226-33. PubMed ID: 23176364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review.
    Li SY; Duan CQ
    Crit Rev Food Sci Nutr; 2019; 59(12):1840-1867. PubMed ID: 29381384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur free red wines through the use of grapevine shoots: Impact on the wine quality.
    Raposo R; Chinnici F; Ruiz-Moreno MJ; Puertas B; Cuevas FJ; Carbú M; Guerrero RF; Ortíz-Somovilla V; Moreno-Rojas JM; Cantos-Villar E
    Food Chem; 2018 Mar; 243():453-460. PubMed ID: 29146365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability.
    Tachtalidou S; Sok N; Denat F; Noret L; Schmit-Kopplin P; Nikolantonaki M; Gougeon RD
    Food Chem; 2022 Mar; 373(Pt B):131679. PubMed ID: 34865920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.