These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33387845)

  • 1. Integrated photocatalysis-adsorption-membrane separation in rotating reactor for synergistic removal of RhB.
    Zhang J; Tong H; Pei W; Liu W; Shi F; Li Y; Huo Y
    Chemosphere; 2021 May; 270():129424. PubMed ID: 33387845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of BiOBr microspheres to rhodamine B and its influence on photocatalytic reaction.
    Liang C; Ma J; Cao Y; Zhang T; Yang C; Wu Y; Li H; Xu H; Hua Y; Wang C
    Chemosphere; 2022 Oct; 304():135320. PubMed ID: 35697103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ag/BiOBr Film in a Rotating-Disk Reactor Containing Long-Afterglow Phosphor for Round-the-Clock Photocatalysis.
    Yin H; Chen X; Hou R; Zhu H; Li S; Huo Y; Li H
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):20076-82. PubMed ID: 26317239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient adsorption and photocatalytic degradation of Rhodamine B under visible light irradiation over BiOBr/montmorillonite composites.
    Xu C; Wu H; Gu FL
    J Hazard Mater; 2014 Jun; 275():185-92. PubMed ID: 24857901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated adsorption-solar photocatalytic membrane reactor for degradation of hazardous Congo red using Fe-doped ZnO and Fe-doped ZnO/rGO nanocomposites.
    Ong CB; Mohammad AW; Ng LY
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):33856-33869. PubMed ID: 29943245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using wood flour waste to produce biochar as the support to enhance the visible-light photocatalytic performance of BiOBr for organic and inorganic contaminants removal.
    Geng A; Xu L; Gan L; Mei C; Wang L; Fang X; Li M; Pan M; Han S; Cui J
    Chemosphere; 2020 Jul; 250():126291. PubMed ID: 32109695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene oxide and carbon nanodots co-modified BiOBr nanocomposites with enhanced photocatalytic 4-chlorophenol degradation and mechanism insight.
    Qu S; Xiong Y; Zhang J
    J Colloid Interface Sci; 2018 Oct; 527():78-86. PubMed ID: 29783141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced photocatalytic performance of BiOBr/NH
    Zhu SR; Liu PF; Wu MK; Zhao WN; Li GC; Tao K; Yi FY; Han L
    Dalton Trans; 2016 Nov; 45(43):17521-17529. PubMed ID: 27747336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visible-Light-Driven Zr-MOF/BiOBr Heterojunction for the Efficient Synchronous Removal of Hexavalent Chromium and Rhodamine B from Wastewater.
    Yu F; Jin M; Zhang Y; Lei C; Zhou L; Zhu H; Yu B
    ACS Omega; 2022 Jul; 7(29):25066-25077. PubMed ID: 35910172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visible-Light-Driven Photocatalytic Degradation of Organic Water Pollutants Promoted by Sulfite Addition.
    Deng W; Zhao H; Pan F; Feng X; Jung B; Abdel-Wahab A; Batchelor B; Li Y
    Environ Sci Technol; 2017 Nov; 51(22):13372-13379. PubMed ID: 29083909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid BiOBr-TiO2 nanocomposites with high visible light photocatalytic activity for water treatment.
    Wei XX; Cui H; Guo S; Zhao L; Li W
    J Hazard Mater; 2013 Dec; 263 Pt 2():650-8. PubMed ID: 24220195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of photocatalytic efficiency by in situ fabrication of BiOBr/BiVO
    Yin W; Sun X; Wang W
    J Environ Sci (China); 2017 Oct; 60():78-83. PubMed ID: 29031449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic effect of photocatalysis and adsorption of nano-TiO
    Sun Z; He X; Du J; Gong W
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21733-21740. PubMed ID: 27522208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BiOBr hybrids for organic pollutant removal by the combined treatments of adsorption and photocatalysis.
    Yu Y; Li C; Huang S; Hu Z; Chen Z; Gao H
    RSC Adv; 2018 Sep; 8(56):32368-32376. PubMed ID: 35547498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BiOBr/Ag/AgBr heterojunctions decorated carbon fiber cloth with broad-spectral photoresponse as filter-membrane-shaped photocatalyst for the efficient purification of flowing wastewater.
    Liu T; Zhang Y; Shi Z; Cao W; Zhang L; Liu J; Chen Z
    J Colloid Interface Sci; 2021 Apr; 587():633-643. PubMed ID: 33220950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed phase nano-CdS supported on activated biomass carbon as efficient visible light-driven photocatalysts.
    Cai FY; Zhang YQ; Wang JT; Zhou JR; Cao HL; Lü J
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31055-31061. PubMed ID: 31456150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new p-metal-n structure AgBr-Ag-BiOBr with superior visible-light-responsive catalytic performance.
    Dong Y; Feng C; Zhang J; Jiang P; Wang G; Wu X; Miao H
    Chem Asian J; 2015 Mar; 10(3):687-93. PubMed ID: 25556558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel Ag-BiOBr-rGO photocatalyst for enhanced ketoprofen degradation: Kinetics and mechanisms.
    Xu G; Li M; Wang Y; Zheng N; Yang L; Yu H; Yu Y
    Sci Total Environ; 2019 Aug; 678():173-180. PubMed ID: 31075583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene oxide/α-Bi(2)O(3) composites for visible-light photocatalysis, chemical catalysis, and solar energy conversion.
    Som T; Troppenz GV; Wendt RR; Wollgarten M; Rappich J; Emmerling F; Rademann K
    ChemSusChem; 2014 Mar; 7(3):854-65. PubMed ID: 24578169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. K
    Zhu M; Cai Y; Liu S; Fang M; Tan X; Liu X; Kong M; Xu W; Mei H; Hayat T
    Environ Pollut; 2019 May; 248():448-455. PubMed ID: 30826607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.