These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 33387907)
1. Bayesian population physiologically-based pharmacokinetic model for robustness evaluation of withdrawal time in tilapia aquaculture administrated to florfenicol. Lin HC; Chen WY Ecotoxicol Environ Saf; 2021 Mar; 210():111867. PubMed ID: 33387907 [TBL] [Abstract][Full Text] [Related]
2. Development and application of a population physiologically based pharmacokinetic model for florfenicol and its metabolite florfenicol amine in cattle. Yang F; Lin Z; Riviere JE; Baynes RE Food Chem Toxicol; 2019 Apr; 126():285-294. PubMed ID: 30825586 [TBL] [Abstract][Full Text] [Related]
3. Bayesian population pharmacokinetic modeling of florfenicol in pigs after intravenous and intramuscular administration. Liu Z; Rong T; Zeng D; Shen X; Ma X; Zeng Z J Vet Pharmacol Ther; 2018 Oct; 41(5):719-725. PubMed ID: 29974964 [TBL] [Abstract][Full Text] [Related]
4. Pharmacokinetic-pharmacodynamic modelling for the determination of optimal dosing regimen of florfenicol in Nile tilapia (Oreochromis niloticus) at different water temperatures and antimicrobial susceptibility levels. Rairat T; Hsieh CY; Thongpiam W; Chou CC J Fish Dis; 2019 Aug; 42(8):1181-1190. PubMed ID: 31157416 [TBL] [Abstract][Full Text] [Related]
5. Bayesian population analysis of a washin-washout physiologically based pharmacokinetic model for acetone. Mörk AK; Jonsson F; Johanson G Toxicol Appl Pharmacol; 2009 Nov; 240(3):423-32. PubMed ID: 19660484 [TBL] [Abstract][Full Text] [Related]
6. Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification. Chou WC; Lin Z Environ Int; 2019 Aug; 129():408-422. PubMed ID: 31152982 [TBL] [Abstract][Full Text] [Related]
7. Bayesian Population Physiologically-Based Pharmacokinetic (PBPK) Approach for a Physiologically Realistic Characterization of Interindividual Variability in Clinically Relevant Populations. Krauss M; Tappe K; Schuppert A; Kuepfer L; Goerlitz L PLoS One; 2015; 10(10):e0139423. PubMed ID: 26431198 [TBL] [Abstract][Full Text] [Related]
8. Lifetime PCB 153 bioaccumulation and pharmacokinetics in pilot whales: Bayesian population PBPK modeling and Markov chain Monte Carlo simulations. Weijs L; Roach AC; Yang RS; McDougall R; Lyons M; Housand C; Tibax D; Manning T; Chapman J; Edge K; Covaci A; Blust R Chemosphere; 2014 Jan; 94():91-6. PubMed ID: 24080004 [TBL] [Abstract][Full Text] [Related]
9. Application of Bayesian population physiologically based pharmacokinetic (PBPK) modeling and Markov chain Monte Carlo simulations to pesticide kinetics studies in protected marine mammals: DDT, DDE, and DDD in harbor porpoises. Weijs L; Yang RS; Das K; Covaci A; Blust R Environ Sci Technol; 2013 May; 47(9):4365-74. PubMed ID: 23560461 [TBL] [Abstract][Full Text] [Related]
10. Reduction of a Whole-Body Physiologically Based Pharmacokinetic Model to Stabilise the Bayesian Analysis of Clinical Data. Wendling T; Tsamandouras N; Dumitras S; Pigeolet E; Ogungbenro K; Aarons L AAPS J; 2016 Jan; 18(1):196-209. PubMed ID: 26538125 [TBL] [Abstract][Full Text] [Related]
11. Bayesian evaluation of a physiologically-based pharmacokinetic (PBPK) model of long-term kinetics of metal nanoparticles in rats. Sweeney LM; MacCalman L; Haber LT; Kuempel ED; Tran CL Regul Toxicol Pharmacol; 2015 Oct; 73(1):151-63. PubMed ID: 26145831 [TBL] [Abstract][Full Text] [Related]
12. Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age. Allen BC; Hack CE; Clewell HJ Risk Anal; 2007 Aug; 27(4):947-59. PubMed ID: 17958503 [TBL] [Abstract][Full Text] [Related]
13. A physiologically based pharmacokinetic model of doxycycline for predicting tissue residues and withdrawal intervals in grass carp (Ctenopharyngodon idella). Xu N; Li M; Chou WC; Lin Z Food Chem Toxicol; 2020 Mar; 137():111127. PubMed ID: 31945393 [TBL] [Abstract][Full Text] [Related]
14. Population pharmacokinetic reanalysis of a Diazepam PBPK model: a comparison of Stan and GNU MCSim. Tsiros P; Bois FY; Dokoumetzidis A; Tsiliki G; Sarimveis H J Pharmacokinet Pharmacodyn; 2019 Apr; 46(2):173-192. PubMed ID: 30949914 [TBL] [Abstract][Full Text] [Related]
15. An Interactive Generic Physiologically Based Pharmacokinetic (igPBPK) Modeling Platform to Predict Drug Withdrawal Intervals in Cattle and Swine: A Case Study on Flunixin, Florfenicol, and Penicillin G. Chou WC; Tell LA; Baynes RE; Davis JL; Maunsell FP; Riviere JE; Lin Z Toxicol Sci; 2022 Jul; 188(2):180-197. PubMed ID: 35642931 [TBL] [Abstract][Full Text] [Related]
16. A physiologically based pharmacokinetics model for florfenicol in crucian carp and oral-to-intramuscular extrapolation. Yang F; Sun N; Sun YX; Shan Q; Zhao HY; Zeng DP; Zeng ZL J Vet Pharmacol Ther; 2013 Apr; 36(2):192-200. PubMed ID: 22712485 [TBL] [Abstract][Full Text] [Related]
17. Well-tempered MCMC simulations for population pharmacokinetic models. Bois FY; Hsieh NH; Gao W; Chiu WA; Reisfeld B J Pharmacokinet Pharmacodyn; 2020 Dec; 47(6):543-559. PubMed ID: 32737765 [TBL] [Abstract][Full Text] [Related]
18. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice. Marino DJ; Clewell HJ; Gentry PR; Covington TR; Hack CE; David RM; Morgott DA Regul Toxicol Pharmacol; 2006 Jun; 45(1):44-54. PubMed ID: 16442684 [TBL] [Abstract][Full Text] [Related]
19. Incorporation of the glutathione conjugation pathway in an updated physiologically-based pharmacokinetic model for perchloroethylene in mice. Dalaijamts C; Cichocki JA; Luo YS; Rusyn I; Chiu WA Toxicol Appl Pharmacol; 2018 Aug; 352():142-152. PubMed ID: 29857080 [TBL] [Abstract][Full Text] [Related]
20. Computational toxicology of chloroform: reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data. Lyons MA; Yang RS; Mayeno AN; Reisfeld B Environ Health Perspect; 2008 Aug; 116(8):1040-6. PubMed ID: 18709138 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]