These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 33388145)

  • 1. Novel dynamic enhanced robust principal subspace discriminant analysis for high-dimensional process fault diagnosis with industrial applications.
    Zhang MQ; Luo XL
    ISA Trans; 2021 Aug; 114():1-14. PubMed ID: 33388145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sparse Wasserstein stationary subspace analysis for fault detection and diagnosis of nonstationary industrial processes.
    Huang K; Li J; Wu D; Liu Y; Yang C; Gui W
    ISA Trans; 2024 Aug; 151():285-295. PubMed ID: 38845235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An improved mixture robust probabilistic linear discriminant analyzer for fault classification.
    Liu Y; Zeng J; Xie L; Lang X; Luo S; Su H
    ISA Trans; 2020 Mar; 98():227-236. PubMed ID: 31466729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear Process Fault Diagnosis Based on Serial Principal Component Analysis.
    Deng X; Tian X; Chen S; Harris CJ
    IEEE Trans Neural Netw Learn Syst; 2018 Mar; 29(3):560-572. PubMed ID: 28026785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning Robust Discriminant Subspace Based on Joint L₂,ₚ- and L₂,ₛ-Norm Distance Metrics.
    Fu L; Li Z; Ye Q; Yin H; Liu Q; Chen X; Fan X; Yang W; Yang G
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):130-144. PubMed ID: 33180734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling.
    Keshtkaran MR; Yang Z
    J Neural Eng; 2017 Jun; 14(3):036003. PubMed ID: 28198354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. F-Norm-Based Soft LDA Algorithm for Fault Detection in Chemical Production Processes.
    Chen H; Zhang H; Yang Y; Zhang Q
    ACS Omega; 2024 Aug; 9(32):34725-34734. PubMed ID: 39157156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning Robust and Discriminative Subspace With Low-Rank Constraints.
    Li S; Fu Y
    IEEE Trans Neural Netw Learn Syst; 2016 Nov; 27(11):2160-2173. PubMed ID: 26340784
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Structured Subspace Learning for Data Representation.
    Li Z; Liu J; Tang J; Lu H
    IEEE Trans Pattern Anal Mach Intell; 2015 Oct; 37(10):2085-98. PubMed ID: 26353186
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Feature Extraction-Based Quadratic Discriminant Analysis for Industrial Process Fault Classification and Diagnosis.
    Li H; Jia M; Mao Z
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating Heterogeneous Features into the Random Subspace Method for Bearing Fault Diagnosis.
    Chu Y; Ali SM; Lu M; Zhang Y
    Entropy (Basel); 2023 Aug; 25(8):. PubMed ID: 37628225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforced Robust Principal Component Pursuit.
    Brahma PP; She Y; Li S; Li J; Wu D
    IEEE Trans Neural Netw Learn Syst; 2018 May; 29(5):1525-1538. PubMed ID: 28320678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex dynamic process monitoring method based on slow feature analysis model of multi-subspace partitioning.
    Li Z; Yan X
    ISA Trans; 2019 Dec; 95():68-81. PubMed ID: 31151751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Online Low-Rank Representation Learning for Joint Multi-Subspace Recovery and Clustering.
    Bo Li ; Risheng Liu ; Junjie Cao ; Jie Zhang ; Yu-Kun Lai ; Xiuping Liu
    IEEE Trans Image Process; 2018 Jan; 27(1):335-348. PubMed ID: 28991739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subspace learning from image gradient orientations.
    Tzimiropoulos G; Zafeiriou S; Pantic M
    IEEE Trans Pattern Anal Mach Intell; 2012 Dec; 34(12):2454-66. PubMed ID: 22271825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Diagnostic Framework for Process and Sensor Faults in Chemical Industry.
    Zhang J; Luo W; Dai Y
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33530519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical process monitoring based on orthogonal multi-manifold projections and a novel variable contribution analysis.
    Tong C; Shi X; Lan T
    ISA Trans; 2016 Nov; 65():407-417. PubMed ID: 27435000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise-insensitive discriminative subspace fuzzy clustering.
    Zhi X; Yu T; Bi L; Li Y
    J Appl Stat; 2023; 50(3):659-674. PubMed ID: 36819072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Semi-Supervised Feature Extraction Method and Its Application in Automotive Assembly Fault Diagnosis Based on Vision Sensor Data.
    Zeng X; Yin SB; Guo Y; Lin JR; Zhu JG
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network.
    Wang Y; Pan Z; Yuan X; Yang C; Gui W
    ISA Trans; 2020 Jan; 96():457-467. PubMed ID: 31324340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.