These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 33388279)
1. Microbiota and cancer: In vitro and in vivo models to evaluate nanomedicines. Ladaycia A; Loretz B; Passirani C; Lehr CM; Lepeltier E Adv Drug Deliv Rev; 2021 Mar; 170():44-70. PubMed ID: 33388279 [TBL] [Abstract][Full Text] [Related]
2. Combining Nanomedicine and Immunotherapy. Shi Y; Lammers T Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725 [TBL] [Abstract][Full Text] [Related]
3. Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures. He H; Liu L; Morin EE; Liu M; Schwendeman A Acc Chem Res; 2019 Sep; 52(9):2445-2461. PubMed ID: 31424909 [TBL] [Abstract][Full Text] [Related]
4. Reappraisal of anticancer nanomedicine design criteria in three types of preclinical cancer models for better clinical translation. Luan X; Yuan H; Song Y; Hu H; Wen B; He M; Zhang H; Li Y; Li F; Shu P; Burnett JP; Truchan N; Palmisano M; Pai MP; Zhou S; Gao W; Sun D Biomaterials; 2021 Aug; 275():120910. PubMed ID: 34144373 [TBL] [Abstract][Full Text] [Related]
5. The past, present, and future of breast cancer models for nanomedicine development. Boix-Montesinos P; Soriano-Teruel PM; Armiñán A; Orzáez M; Vicent MJ Adv Drug Deliv Rev; 2021 Jun; 173():306-330. PubMed ID: 33798642 [TBL] [Abstract][Full Text] [Related]
6. Best Practices for Preclinical In Vivo Testing of Cancer Nanomedicines. Valcourt DM; Kapadia CH; Scully MA; Dang MN; Day ES Adv Healthc Mater; 2020 Jun; 9(12):e2000110. PubMed ID: 32367687 [TBL] [Abstract][Full Text] [Related]
7. Nanomedicines for cancer therapy: current status, challenges and future prospects. Bor G; Mat Azmi ID; Yaghmur A Ther Deliv; 2019 Feb; 10(2):113-132. PubMed ID: 30678550 [TBL] [Abstract][Full Text] [Related]
8. P-glycoprotein-targeted photodynamic therapy boosts cancer nanomedicine by priming tumor microenvironment. Mao C; Li F; Zhao Y; Debinski W; Ming X Theranostics; 2018; 8(22):6274-6290. PubMed ID: 30613297 [TBL] [Abstract][Full Text] [Related]
9. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy. Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817 [TBL] [Abstract][Full Text] [Related]
10. What Went Wrong with Anticancer Nanomedicine Design and How to Make It Right. Sun D; Zhou S; Gao W ACS Nano; 2020 Oct; 14(10):12281-12290. PubMed ID: 33021091 [TBL] [Abstract][Full Text] [Related]
11. Diethyldithiocarbamate-copper nanocomplex reinforces disulfiram chemotherapeutic efficacy through light-triggered nuclear targeting. Ren L; Feng W; Shao J; Ma J; Xu M; Zhu BZ; Zheng N; Liu S Theranostics; 2020; 10(14):6384-6398. PubMed ID: 32483459 [TBL] [Abstract][Full Text] [Related]
12. Zebrafish as a preclinical in vivo screening model for nanomedicines. Sieber S; Grossen P; Bussmann J; Campbell F; Kros A; Witzigmann D; Huwyler J Adv Drug Deliv Rev; 2019; 151-152():152-168. PubMed ID: 30615917 [TBL] [Abstract][Full Text] [Related]
13. DePEGylation strategies to increase cancer nanomedicine efficacy. Kong L; Campbell F; Kros A Nanoscale Horiz; 2019 Mar; 4(2):378-387. PubMed ID: 32254090 [TBL] [Abstract][Full Text] [Related]
14. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines. Ullah R; Wazir J; Khan FU; Diallo MT; Ihsan AU; Mikrani R; Aquib M; Zhou X AAPS PharmSciTech; 2020 May; 21(4):132. PubMed ID: 32409932 [TBL] [Abstract][Full Text] [Related]
15. Boosting Nanomedicine Efficacy with Hyperbaric Oxygen Therapy. Wang X; Li S; Liu X; Wu X; Ye N; Yang X; Li Z Adv Exp Med Biol; 2021; 1295():77-95. PubMed ID: 33543456 [TBL] [Abstract][Full Text] [Related]
16. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment. Kwon S; Ko H; You DG; Kataoka K; Park JH Acc Chem Res; 2019 Jul; 52(7):1771-1782. PubMed ID: 31241894 [TBL] [Abstract][Full Text] [Related]
17. In Vitro and In Vivo Tumor Models for the Evaluation of Anticancer Nanoparticles. Abreu TR; Biscaia M; Gonçalves N; Fonseca NA; Moreira JN Adv Exp Med Biol; 2021; 1295():271-299. PubMed ID: 33543464 [TBL] [Abstract][Full Text] [Related]
18. Modulating the tumor microenvironment with new therapeutic nanoparticles: A promising paradigm for tumor treatment. Zhang Y; Ho SH; Li B; Nie G; Li S Med Res Rev; 2020 May; 40(3):1084-1102. PubMed ID: 31709590 [TBL] [Abstract][Full Text] [Related]
19. High-resolution 3D visualization of nanomedicine distribution in tumors. Moss JI; Barjat H; Emmas SA; Strittmatter N; Maynard J; Goodwin RJA; Storm G; Lammers T; Puri S; Ashford MB; Barry ST Theranostics; 2020; 10(2):880-897. PubMed ID: 31903157 [TBL] [Abstract][Full Text] [Related]
20. Copolymers of poly(lactic acid) and D-α-tocopheryl polyethylene glycol 1000 succinate-based nanomedicines: versatile multifunctional platforms for cancer diagnosis and therapy. Vijayakumar MR; Muthu MS; Singh S Expert Opin Drug Deliv; 2013 Apr; 10(4):529-43. PubMed ID: 23316695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]