These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 33388283)

  • 21. Introduction to heavy chain antibodies and derived Nanobodies.
    Vincke C; Muyldermans S
    Methods Mol Biol; 2012; 911():15-26. PubMed ID: 22886243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Camelid single-domain antibody fragments: Uses and prospects to investigate protein misfolding and aggregation, and to treat diseases associated with these phenomena.
    Pain C; Dumont J; Dumoulin M
    Biochimie; 2015 Apr; 111():82-106. PubMed ID: 25656912
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanobody-based CD38-specific heavy chain antibodies induce killing of multiple myeloma and other hematological malignancies.
    Schriewer L; Schütze K; Petry K; Hambach J; Fumey W; Koenigsdorf J; Baum N; Menzel S; Rissiek B; Riecken K; Fehse B; Röckendorf JL; Schmid J; Albrecht B; Pinnschmidt H; Ayuk F; Kröger N; Binder M; Schuch G; Hansen T; Haag F; Adam G; Koch-Nolte F; Bannas P
    Theranostics; 2020; 10(6):2645-2658. PubMed ID: 32194826
    [No Abstract]   [Full Text] [Related]  

  • 24. Nanobody‑horseradish peroxidase and -EGFP fusions as reagents to detect porcine parvovirus in the immunoassays.
    Lu Q; Li X; Zhao J; Zhu J; Luo Y; Duan H; Ji P; Wang K; Liu B; Wang X; Fan W; Sun Y; Zhou EM; Zhao Q
    J Nanobiotechnology; 2020 Jan; 18(1):7. PubMed ID: 31910833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural Basis of Epitope Recognition by Heavy-Chain Camelid Antibodies.
    Zavrtanik U; Lukan J; Loris R; Lah J; Hadži S
    J Mol Biol; 2018 Oct; 430(21):4369-4386. PubMed ID: 30205092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potent and efficacious inhibition of CXCR2 signaling by biparatopic nanobodies combining two distinct modes of action.
    Bradley ME; Dombrecht B; Manini J; Willis J; Vlerick D; De Taeye S; Van den Heede K; Roobrouck A; Grot E; Kent TC; Laeremans T; Steffensen S; Van Heeke G; Brown Z; Charlton SJ; Cromie KD
    Mol Pharmacol; 2015 Feb; 87(2):251-62. PubMed ID: 25468882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From astrocytes to satellite glial cells and back: A 25 year-long journey through the purinergic modulation of glial functions in pain and more.
    Ceruti S
    Biochem Pharmacol; 2021 May; 187():114397. PubMed ID: 33382970
    [TBL] [Abstract][Full Text] [Related]  

  • 28. GPCR-targeting nanobodies: attractive research tools, diagnostics, and therapeutics.
    Mujić-Delić A; de Wit RH; Verkaar F; Smit MJ
    Trends Pharmacol Sci; 2014 May; 35(5):247-55. PubMed ID: 24690241
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting multiple myeloma with nanobody-based heavy chain antibodies, bispecific killer cell engagers, chimeric antigen receptors, and nanobody-displaying AAV vectors.
    Hambach J; Mann AM; Bannas P; Koch-Nolte F
    Front Immunol; 2022; 13():1005800. PubMed ID: 36405759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Progress in nanobody and its application in diagnosis].
    Kong Q; Yao Y; Chen R; Lu S
    Sheng Wu Gong Cheng Xue Bao; 2014 Sep; 30(9):1351-61. PubMed ID: 25720150
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains.
    Saerens D; Conrath K; Govaert J; Muyldermans S
    J Mol Biol; 2008 Mar; 377(2):478-88. PubMed ID: 18262543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physicochemical improvement of rabbit derived single-domain antibodies by substitutions with amino acids conserved in camelid antibodies.
    Shinozaki N; Hashimoto R; Noda M; Uchiyama S
    J Biosci Bioeng; 2018 Jun; 125(6):654-661. PubMed ID: 29398547
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of Nanobody Nb23.
    Percipalle M; Hunashal Y; Steyaert J; Fogolari F; Esposito G
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34207949
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanobodies as Probes for Protein Dynamics in Vitro and in Cells.
    Dmitriev OY; Lutsenko S; Muyldermans S
    J Biol Chem; 2016 Feb; 291(8):3767-75. PubMed ID: 26677230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases.
    Antonioli L; Blandizzi C; Pacher P; Haskó G
    Pharmacol Rev; 2019 Jul; 71(3):345-382. PubMed ID: 31235653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of Useful Nanobodies by Phage Display of Immune Single Domain Libraries Derived from Camelid Heavy Chain Antibodies.
    Romao E; Morales-Yanez F; Hu Y; Crauwels M; De Pauw P; Hassanzadeh GG; Devoogdt N; Ackaert C; Vincke C; Muyldermans S
    Curr Pharm Des; 2016; 22(43):6500-6518. PubMed ID: 27669966
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of Three Antihapten VHH Selection Strategies for the Development of Highly Sensitive Immunoassays for Microcystins.
    Pírez-Schirmer M; Rossotti M; Badagian N; Leizagoyen C; Brena BM; González-Sapienza G
    Anal Chem; 2017 Jun; 89(12):6800-6806. PubMed ID: 28494149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein.
    Salema V; Fernández LÁ
    Protein Expr Purif; 2013 Sep; 91(1):42-8. PubMed ID: 23856605
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tribute to Prof. Geoffrey Burnstock: transition of purinergicsignaling to drug discovery.
    Jacobson KA
    Purinergic Signal; 2021 Mar; 17(1):3-8. PubMed ID: 32794053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A guide to: generation and design of nanobodies.
    Muyldermans S
    FEBS J; 2021 Apr; 288(7):2084-2102. PubMed ID: 32780549
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.