These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 33388290)
1. Probing Interdomain Linkers and Protein Supertertiary Structure In Vitro and in Live Cells with Fluorescent Protein Resonance Energy Transfer. Basak S; Sakia N; Dougherty L; Guo Z; Wu F; Mindlin F; Lary JW; Cole JL; Ding F; Bowen ME J Mol Biol; 2021 Mar; 433(5):166793. PubMed ID: 33388290 [TBL] [Abstract][Full Text] [Related]
2. Construction of a linker library with widely controllable flexibility for fusion protein design. Li G; Huang Z; Zhang C; Dong BJ; Guo RH; Yue HW; Yan LT; Xing XH Appl Microbiol Biotechnol; 2016 Jan; 100(1):215-25. PubMed ID: 26394862 [TBL] [Abstract][Full Text] [Related]
3. A dark green fluorescent protein as an acceptor for measurement of Förster resonance energy transfer. Murakoshi H; Shibata ACE; Nakahata Y; Nabekura J Sci Rep; 2015 Oct; 5():15334. PubMed ID: 26469148 [TBL] [Abstract][Full Text] [Related]
4. Intramolecular and intermolecular fluorescence resonance energy transfer in fluorescent protein-tagged Na-K-Cl cotransporter (NKCC1): sensitivity to regulatory conformational change and cell volume. Pedersen M; Carmosino M; Forbush B J Biol Chem; 2008 Feb; 283(5):2663-74. PubMed ID: 18045874 [TBL] [Abstract][Full Text] [Related]
5. Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers. Evers TH; van Dongen EM; Faesen AC; Meijer EW; Merkx M Biochemistry; 2006 Nov; 45(44):13183-92. PubMed ID: 17073440 [TBL] [Abstract][Full Text] [Related]
6. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. Navarro-Borelly L; Somasundaram A; Yamashita M; Ren D; Miller RJ; Prakriya M J Physiol; 2008 Nov; 586(22):5383-401. PubMed ID: 18832420 [TBL] [Abstract][Full Text] [Related]
7. Novel drug discovery platform for spinocerebellar ataxia, using fluorescence technology targeting β-III-spectrin. Rebbeck RT; Andrick AK; Denha SA; Svensson B; Guhathakurta P; Thomas DD; Hays TS; Avery AW J Biol Chem; 2021; 296():100215. PubMed ID: 33839680 [TBL] [Abstract][Full Text] [Related]
8. Improving brightness and photostability of green and red fluorescent proteins for live cell imaging and FRET reporting. Bajar BT; Wang ES; Lam AJ; Kim BB; Jacobs CL; Howe ES; Davidson MW; Lin MZ; Chu J Sci Rep; 2016 Feb; 6():20889. PubMed ID: 26879144 [TBL] [Abstract][Full Text] [Related]
9. High-precision FLIM-FRET in fixed and living cells reveals heterogeneity in a simple CFP-YFP fusion protein. Millington M; Grindlay GJ; Altenbach K; Neely RK; Kolch W; Bencina M; Read ND; Jones AC; Dryden DT; Magennis SW Biophys Chem; 2007 May; 127(3):155-64. PubMed ID: 17336446 [TBL] [Abstract][Full Text] [Related]
10. FRET-based nanosensors for monitoring and quantification of alcohols in living cells. Soleja N; Manzoor O; Nandal P; Mohsin M Org Biomol Chem; 2019 Feb; 17(9):2413-2422. PubMed ID: 30735222 [TBL] [Abstract][Full Text] [Related]
11. Development of a cell-based fluorescence resonance energy transfer reporter for Bacillus anthracis lethal factor protease. Kimura RH; Steenblock ER; Camarero JA Anal Biochem; 2007 Oct; 369(1):60-70. PubMed ID: 17586456 [TBL] [Abstract][Full Text] [Related]
12. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET). He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312 [TBL] [Abstract][Full Text] [Related]
13. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]
14. A viral small terminase subunit (TerS) twin ring pac synapsis DNA packaging model is supported by fluorescent fusion proteins. Dixit AB; Ray K; Black LW Virology; 2019 Oct; 536():39-48. PubMed ID: 31400548 [TBL] [Abstract][Full Text] [Related]
15. Visualization of arginine influx into plant cells using a specific FRET-sensor. Bogner M; Ludewig U J Fluoresc; 2007 Jul; 17(4):350-60. PubMed ID: 17492367 [TBL] [Abstract][Full Text] [Related]
16. Fluorescence Dynamics of a FRET Probe Designed for Crowding Studies. Currie M; Leopold H; Schwarz J; Boersma AJ; Sheets ED; Heikal AA J Phys Chem B; 2017 Jun; 121(23):5688-5698. PubMed ID: 28520430 [TBL] [Abstract][Full Text] [Related]
17. Probing the cis-arrangement of prototype tight junction proteins claudin-1 and claudin-3. Milatz S; Piontek J; Schulzke JD; Blasig IE; Fromm M; Günzel D Biochem J; 2015 Jun; 468(3):449-58. PubMed ID: 25849148 [TBL] [Abstract][Full Text] [Related]
18. Crowding Effects on Energy-Transfer Efficiencies of Hetero-FRET Probes As Measured Using Time-Resolved Fluorescence Anisotropy. Leopold HJ; Leighton R; Schwarz J; Boersma AJ; Sheets ED; Heikal AA J Phys Chem B; 2019 Jan; 123(2):379-393. PubMed ID: 30571116 [TBL] [Abstract][Full Text] [Related]
19. Fluorescence resonance energy transfer-based stoichiometry in living cells. Hoppe A; Christensen K; Swanson JA Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132 [TBL] [Abstract][Full Text] [Related]
20. A dark yellow fluorescent protein (YFP)-based Resonance Energy-Accepting Chromoprotein (REACh) for Förster resonance energy transfer with GFP. Ganesan S; Ameer-Beg SM; Ng TT; Vojnovic B; Wouters FS Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4089-94. PubMed ID: 16537489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]