BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 33388484)

  • 1. Unilateral above-knee amputees achieve symmetric mediolateral ground reaction impulse in walking using an asymmetric gait strategy.
    Hisano G; Hashizume S; Kobayashi T; Major MJ; Nakashima M; Hobara H
    J Biomech; 2021 Jan; 115():110201. PubMed ID: 33388484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mediation of the mediolateral ground reaction force profile to maintain straight running among unilateral transfemoral amputees.
    Tang YW; Murai A; Hobara H
    Sci Rep; 2023 May; 13(1):7823. PubMed ID: 37188732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of walking speed on magnitude and symmetry of ground reaction forces in individuals with transfemoral prosthesis.
    Kobayashi T; Hu M; Amma R; Hisano G; Murata H; Ichimura D; Hobara H
    J Biomech; 2022 Jan; 130():110845. PubMed ID: 34749160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of step frequency during running on the magnitude and symmetry of ground reaction forces in individuals with a transfemoral amputation.
    Kobayashi T; Koh MWP; Hu M; Murata H; Hisano G; Ichimura D; Hobara H
    J Neuroeng Rehabil; 2022 Mar; 19(1):33. PubMed ID: 35321725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ground reaction forces during double limb stances while walking in individuals with unilateral transfemoral amputation.
    Kobayashi T; Koh MWP; Jor A; Hisano G; Murata H; Ichimura D; Hobara H
    Front Bioeng Biotechnol; 2022; 10():1041060. PubMed ID: 36727041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plantar pressures and ground reaction forces during walking of individuals with unilateral transfemoral amputation.
    Castro MP; Soares D; Mendes E; Machado L
    PM R; 2014 Aug; 6(8):698-707.e1. PubMed ID: 24487128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of prosthetic foot stiffness on transtibial amputee walking mechanics and balance control during turning.
    Shell CE; Segal AD; Klute GK; Neptune RR
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():56-63. PubMed ID: 28869812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of prosthetic alignment on gait and biomechanical loading in individuals with transfemoral amputation: A preliminary study.
    Zhang T; Bai X; Liu F; Fan Y
    Gait Posture; 2019 Jun; 71():219-226. PubMed ID: 31078826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of transtibial amputee and non-amputee biomechanics during a common turning task.
    Segal AD; Orendurff MS; Czerniecki JM; Schoen J; Klute GK
    Gait Posture; 2011 Jan; 33(1):41-7. PubMed ID: 20974535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reference values for gait temporal and loading symmetry of lower-limb amputees can help in refocusing rehabilitation targets.
    Cutti AG; Verni G; Migliore GL; Amoresano A; Raggi M
    J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):61. PubMed ID: 30255808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pilot study comparing prosthetic to sound limb gait mechanics during a turning task in people with transtibial amputation.
    Clemens S; Pew C
    Clin Biomech (Bristol, Avon); 2023 Oct; 109():106077. PubMed ID: 37643570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Muscle and prosthesis contributions to amputee walking mechanics: a modeling study.
    Silverman AK; Neptune RR
    J Biomech; 2012 Aug; 45(13):2271-8. PubMed ID: 22840757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
    Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM
    Clin Biomech (Bristol, Avon); 2018 Jun; 55():65-72. PubMed ID: 29698851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Significance of static prosthesis alignment for standing and walking of patients with lower limb amputation].
    Blumentritt S; Schmalz T; Jarasch R
    Orthopade; 2001 Mar; 30(3):161-8. PubMed ID: 11501007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lower-limb amputee ankle and hip kinetic response to an imposed error in mediolateral foot placement.
    Segal AD; Shofer JB; Klute GK
    J Biomech; 2015 Nov; 48(15):3982-3988. PubMed ID: 26475221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait compensatory mechanisms in unilateral transfemoral amputees.
    Harandi VJ; Ackland DC; Haddara R; Lizama LEC; Graf M; Galea MP; Lee PVS
    Med Eng Phys; 2020 Mar; 77():95-106. PubMed ID: 31919013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of extended powered knee prosthesis stance time via visual feedback on gait symmetry of individuals with unilateral amputation: a preliminary study.
    Brandt A; Riddick W; Stallrich J; Lewek M; Huang HH
    J Neuroeng Rehabil; 2019 Sep; 16(1):112. PubMed ID: 31511010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of prosthetic alignment on the stump temperature and ground reaction forces during gait in transfemoral amputees.
    Cárdenas AM; Uribe J; Font-Llagunes JM; Hernández AM; Plata JA
    Gait Posture; 2022 Jun; 95():76-83. PubMed ID: 35461047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors associated with a risk of prosthetic knee buckling during walking in unilateral transfemoral amputees.
    Hisano G; Hashizume S; Kobayashi Y; Murai A; Kobayashi T; Nakashima M; Hobara H
    Gait Posture; 2020 Mar; 77():69-74. PubMed ID: 31999980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds.
    Silverman AK; Fey NP; Portillo A; Walden JG; Bosker G; Neptune RR
    Gait Posture; 2008 Nov; 28(4):602-9. PubMed ID: 18514526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.