These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33388486)

  • 1. Towards the simulation of active cardiac mechanics using a smoothed finite element method.
    Martonová D; Holz D; Duong MT; Leyendecker S
    J Biomech; 2021 Jan; 115():110153. PubMed ID: 33388486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smoothed finite element methods in simulation of active contraction of myocardial tissue samples.
    Martonová D; Holz D; Duong MT; Leyendecker S
    J Biomech; 2023 Aug; 157():111691. PubMed ID: 37441914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A smoothed finite element method for analysis of anisotropic large deformation of passive rabbit ventricles in diastole.
    Jiang C; Liu GR; Han X; Zhang ZQ; Zeng W
    Int J Numer Method Biomed Eng; 2015 Jan; 31(1):e02697. PubMed ID: 25382158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breaking the state of the heart: meshless model for cardiac mechanics.
    Lluch È; De Craene M; Bijnens B; Sermesant M; Noailly J; Camara O; Morales HG
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1549-1561. PubMed ID: 31161351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastic hexahedral FEM for surgical simulation.
    Gao R; Peters J
    Int J Comput Assist Radiol Surg; 2022 Dec; 17(12):2183-2192. PubMed ID: 36112337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computationally efficient magnetic resonance imaging based surface contact modeling as a tool to evaluate joint injuries and outcomes of surgical interventions compared to finite element modeling.
    Johnson JE; Lee P; McIff TE; Toby EB; Fischer KJ
    J Biomech Eng; 2014 Apr; 136(4):0410021-9. PubMed ID: 24441649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of wave propagation through interfaces using the extended finite element method for magnetic resonance elastography.
    Du Q; Bel-Brunon A; Lambert SA; Hamila N
    J Acoust Soc Am; 2022 May; 151(5):3481. PubMed ID: 35649898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Template-based finite-element mesh generation from medical images.
    Baghdadi L; Steinman DA; Ladak HM
    Comput Methods Programs Biomed; 2005 Jan; 77(1):11-21. PubMed ID: 15639706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving finite element results in modeling heart valve mechanics.
    Earl E; Mohammadi H
    Proc Inst Mech Eng H; 2018 Jul; 232(7):718-725. PubMed ID: 29879869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone remodeling analysis for a swine skull at continuous scale based on the smoothed finite element method.
    Huo SH; Sun C; Liu GR; Ao RH
    J Mech Behav Biomed Mater; 2021 Jun; 118():104444. PubMed ID: 33721770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Right Ventricle Failure After Continuous Flow Left Ventricular Assist Device: A Biventricular Finite-Element and Lumped-Parameter Analysis.
    Scardulla F; Agnese V; Romano G; Di Gesaro G; Sciacca S; Bellavia D; Clemenza F; Pilato M; Pasta S
    Cardiovasc Eng Technol; 2018 Sep; 9(3):427-437. PubMed ID: 29700783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Strategy for Finite Element Mesh Generation for Accurate Solutions of Electroencephalography Forward Problems.
    Lee C; Im CH
    Brain Topogr; 2019 May; 32(3):354-362. PubMed ID: 30073558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free Mesh Method: fundamental conception, algorithms and accuracy study.
    Yagawa G
    Proc Jpn Acad Ser B Phys Biol Sci; 2011; 87(4):115-34. PubMed ID: 21558752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of stress and stress-strain approaches for the active contraction in a rat cardiac cycle model.
    Martonová D; Holz D; Seufert J; Duong MT; Alkassar M; Leyendecker S
    J Biomech; 2022 Mar; 134():110980. PubMed ID: 35182900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational performance of Free Mesh Method applied to continuum mechanics problems.
    Yagawa G
    Proc Jpn Acad Ser B Phys Biol Sci; 2011; 87(4):135-51. PubMed ID: 21558753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Finite Element-Smoothed Particle Hydrodynamics Modelling for Optimizing Cutting Parameters in CFRP Composites.
    Abena A; Ataya S; Hassanin H; El-Sayed MA; Ahmadein M; Alsaleh NA; Ahmed MMZ; Essa K
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison between the hp-version of Finite Element Method with EIDORS for Electrical Impedance Tomography.
    Saeedizadeh N; Kermani S; Rabbani H
    J Med Signals Sens; 2011 Jul; 1(3):200-5. PubMed ID: 22606676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A meshless fragile points method for rule-based definition of myocardial fiber orientation.
    Mountris KA; Pueyo E
    Comput Methods Programs Biomed; 2022 Nov; 226():107164. PubMed ID: 36265289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial scaling in multiscale models: methods for coupling agent-based and finite-element models of wound healing.
    Lee JJ; Talman L; Peirce SM; Holmes JW
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1297-1309. PubMed ID: 30968216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.