These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 33388600)
1. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry. Zhao F; Yuan M; Lei L; Li C; Xu X Bioresour Technol; 2021 Mar; 323():124605. PubMed ID: 33388600 [TBL] [Abstract][Full Text] [Related]
2. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Li C; Wang Y; Zhou L; Cui Q; Sun W; Yang J; Su H; Zhao F Lett Appl Microbiol; 2024 Feb; 77(2):. PubMed ID: 38366661 [TBL] [Abstract][Full Text] [Related]
3. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
4. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814 [TBL] [Abstract][Full Text] [Related]
5. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Rahim R; Ochsner UA; Olvera C; Graninger M; Messner P; Lam JS; Soberón-Chávez G Mol Microbiol; 2001 May; 40(3):708-18. PubMed ID: 11359576 [TBL] [Abstract][Full Text] [Related]
6. Comparative study on antimicrobial activity of mono-rhamnolipid and di-rhamnolipid and exploration of cost-effective antimicrobial agents for agricultural applications. Zhao F; Wang B; Yuan M; Ren S Microb Cell Fact; 2022 Oct; 21(1):221. PubMed ID: 36274139 [TBL] [Abstract][Full Text] [Related]
7. High-Yield Di-Rhamnolipid Production by Li Z; Zhang Y; Lin J; Wang W; Li S Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013 [TBL] [Abstract][Full Text] [Related]
8. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164 [TBL] [Abstract][Full Text] [Related]
9. A Rare Mono-Rhamnolipid Congener Efficiently Produced by Recombinant Wang X; Li D; Yue S; Yuan Z; Li S Molecules; 2024 Apr; 29(9):. PubMed ID: 38731483 [TBL] [Abstract][Full Text] [Related]
10. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
11. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. He C; Dong W; Li J; Li Y; Huang C; Ma Y Biotechnol Lett; 2017 Sep; 39(9):1381-1388. PubMed ID: 28600649 [TBL] [Abstract][Full Text] [Related]
12. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398 [TBL] [Abstract][Full Text] [Related]
13. Production of rhamnolipids with different proportions of mono-rhamnolipids using crude glycerol and a comparison of their application potential for oil recovery from oily sludge. Zhao F; Jiang H; Sun H; Liu C; Han S; Zhang Y RSC Adv; 2019 Jan; 9(6):2885-2891. PubMed ID: 35518985 [TBL] [Abstract][Full Text] [Related]
14. Production and physico-chemical characterization of a biosurfactant produced by Pseudomonas aeruginosa OBP1 isolated from petroleum sludge. Bharali P; Konwar BK Appl Biochem Biotechnol; 2011 Aug; 164(8):1444-60. PubMed ID: 21468636 [TBL] [Abstract][Full Text] [Related]
15. Microbial conversion of agro-processing waste (peanut meal) to rhamnolipid by Pseudomonas aeruginosa: solid-state fermentation, water extraction, medium optimization and potential applications. Zhao F; Zheng M; Xu X Bioresour Technol; 2023 Feb; 369():128426. PubMed ID: 36462764 [TBL] [Abstract][Full Text] [Related]
16. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications. Zhao F; Zhou J; Han S; Ma F; Zhang Y; Zhang J World J Microbiol Biotechnol; 2016 Apr; 32(4):54. PubMed ID: 26925616 [TBL] [Abstract][Full Text] [Related]
17. Heterologous production of Pseudomonas aeruginosa rhamnolipid under anaerobic conditions for microbial enhanced oil recovery. Zhao F; Shi R; Zhao J; Li G; Bai X; Han S; Zhang Y J Appl Microbiol; 2015 Feb; 118(2):379-89. PubMed ID: 25410277 [TBL] [Abstract][Full Text] [Related]
18. Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant. Wild M; Caro AD; Hernández AL; Miller RM; Soberón-Chávez G FEMS Microbiol Lett; 1997 Aug; 153(2):279-85. PubMed ID: 9271853 [TBL] [Abstract][Full Text] [Related]
19. Comparative studies on the structural composition, surface/interface activity and application potential of rhamnolipids produced by Pseudomonas aeruginosa using hydrophobic or hydrophilic substrates. Zhao F; Han S; Zhang Y Bioresour Technol; 2020 Jan; 295():122269. PubMed ID: 31669868 [TBL] [Abstract][Full Text] [Related]
20. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery. Amani H; Müller MM; Syldatk C; Hausmann R Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]