These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 33388664)

  • 1. Emerging roles of the CBL-CIPK calcium signaling network as key regulatory hub in plant nutrition.
    Dong Q; Bai B; Almutairi BO; Kudla J
    J Plant Physiol; 2021 Feb; 257():153335. PubMed ID: 33388664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ca
    Verma P; Sanyal SK; Pandey GK
    Plant Cell Rep; 2021 Nov; 40(11):2111-2122. PubMed ID: 34415375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network.
    Tang RJ; Luan S
    Curr Opin Plant Biol; 2017 Oct; 39():97-105. PubMed ID: 28709026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium-Regulated Phosphorylation Systems Controlling Uptake and Balance of Plant Nutrients.
    Saito S; Uozumi N
    Front Plant Sci; 2020; 11():44. PubMed ID: 32117382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The CBL-CIPK network mediates different signaling pathways in plants.
    Yu Q; An L; Li W
    Plant Cell Rep; 2014 Feb; 33(2):203-14. PubMed ID: 24097244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Root Nutrient Transporters by CIPK23: 'One Kinase to Rule Them All'.
    Ródenas R; Vert G
    Plant Cell Physiol; 2021 Sep; 62(4):553-563. PubMed ID: 33367898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) is required for full activity of CBL-CIPK complexes toward their target proteins.
    Hashimoto K; Eckert C; Anschütz U; Scholz M; Held K; Waadt R; Reyer A; Hippler M; Becker D; Kudla J
    J Biol Chem; 2012 Mar; 287(11):7956-68. PubMed ID: 22253446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integration and channeling of calcium signaling through the CBL calcium sensor/CIPK protein kinase network.
    Batistic O; Kudla J
    Planta; 2004 Oct; 219(6):915-24. PubMed ID: 15322881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CBL-CIPK Ca(2+)-decoding signaling network: function and perspectives.
    Weinl S; Kudla J
    New Phytol; 2009 Nov; 184(3):517-528. PubMed ID: 19860013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CBL-CIPK network is involved in the physiological crosstalk between plant growth and stress adaptation.
    Mao J; Mo Z; Yuan G; Xiang H; Visser RGF; Bai Y; Liu H; Wang Q; van der Linden CG
    Plant Cell Environ; 2023 Oct; 46(10):3012-3022. PubMed ID: 35822392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The potassium channel GhAKT2bD is regulated by CBL-CIPK calcium signalling complexes and facilitates K
    Zhang R; Dong Q; Zhao P; Eickelkamp A; Ma C; He G; Li F; Wallrad L; Becker T; Li Z; Kudla J; Tian X
    FEBS Lett; 2022 Aug; 596(15):1904-1920. PubMed ID: 35561107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A protein phosphorylation/dephosphorylation network regulates a plant potassium channel.
    Lee SC; Lan WZ; Kim BG; Li L; Cheong YH; Pandey GK; Lu G; Buchanan BB; Luan S
    Proc Natl Acad Sci U S A; 2007 Oct; 104(40):15959-64. PubMed ID: 17898163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of CBL-CIPK signaling in plant responses to biotic and abiotic stresses.
    Chen JS; Wang ST; Mei Q; Sun T; Hu JT; Xiao GS; Chen H; Xuan YH
    Plant Mol Biol; 2024 May; 114(3):53. PubMed ID: 38714550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing nutrient transporters to enhance disease resistance in rice.
    Hui S; Zhang P; Yuan M
    J Exp Bot; 2024 May; 75(10):2799-2808. PubMed ID: 38437153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potassium nutrient status drives posttranslational regulation of a low-K response network in Arabidopsis.
    Li KL; Tang RJ; Wang C; Luan S
    Nat Commun; 2023 Jan; 14(1):360. PubMed ID: 36690625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma membrane calcineurin B-like calcium-ion sensor proteins function in regulating primary root growth and nitrate uptake by affecting global phosphorylation patterns and microdomain protein distribution.
    Chu LC; Offenborn JN; Steinhorst L; Wu XN; Xi L; Li Z; Jacquot A; Lejay L; Kudla J; Schulze WX
    New Phytol; 2021 Feb; 229(4):2223-2237. PubMed ID: 33098106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Revisiting paradigms of Ca
    Bender KW; Zielinski RE; Huber SC
    Biochem J; 2018 Jan; 475(1):207-223. PubMed ID: 29305430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The CBL-CIPK network in plant calcium signaling.
    Luan S
    Trends Plant Sci; 2009 Jan; 14(1):37-42. PubMed ID: 19054707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A potassium-sensing niche in Arabidopsis roots orchestrates signaling and adaptation responses to maintain nutrient homeostasis.
    Wang FL; Tan YL; Wallrad L; Du XQ; Eickelkamp A; Wang ZF; He GF; Rehms F; Li Z; Han JP; Schmitz-Thom I; Wu WH; Kudla J; Wang Y
    Dev Cell; 2021 Mar; 56(6):781-794.e6. PubMed ID: 33756120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TORC pathway intersects with a calcium sensor kinase network to regulate potassium sensing in
    Li KL; Xue H; Tang RJ; Luan S
    Proc Natl Acad Sci U S A; 2023 Nov; 120(47):e2316011120. PubMed ID: 37967217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.