These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 33388664)

  • 21. Advances and current challenges in calcium signaling.
    Kudla J; Becker D; Grill E; Hedrich R; Hippler M; Kummer U; Parniske M; Romeis T; Schumacher K
    New Phytol; 2018 Apr; 218(2):414-431. PubMed ID: 29332310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The CBL-CIPK Pathway in Plant Response to Stress Signals.
    Ma X; Li QH; Yu YN; Qiao YM; Haq SU; Gong ZH
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plant calcineurin B-like proteins and their interacting protein kinases.
    Batistic O; Kudla J
    Biochim Biophys Acta; 2009 Jun; 1793(6):985-92. PubMed ID: 19022300
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emerging concepts of potassium homeostasis in plants.
    Srivastava AK; Shankar A; Nalini Chandran AK; Sharma M; Jung KH; Suprasanna P; Pandey GK
    J Exp Bot; 2020 Jan; 71(2):608-619. PubMed ID: 31624829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanistic analysis of AKT1 regulation by the CBL-CIPK-PP2CA interactions.
    Lan WZ; Lee SC; Che YF; Jiang YQ; Luan S
    Mol Plant; 2011 May; 4(3):527-36. PubMed ID: 21596690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The CBL-CIPK network is involved in the physiological crosstalk between plant growth and stress adaptation.
    Mao J; Mo Z; Yuan G; Xiang H; Visser RGF; Bai Y; Liu H; Wang Q; van der Linden CG
    Plant Cell Environ; 2023 Oct; 46(10):3012-3022. PubMed ID: 35822392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CDPKs in immune and stress signaling.
    Boudsocq M; Sheen J
    Trends Plant Sci; 2013 Jan; 18(1):30-40. PubMed ID: 22974587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potassium transport in developing fleshy fruits: the grapevine inward K(+) channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells.
    Cuéllar T; Azeem F; Andrianteranagna M; Pascaud F; Verdeil JL; Sentenac H; Zimmermann S; Gaillard I
    Plant J; 2013 Mar; 73(6):1006-18. PubMed ID: 23217029
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of calcium sensor protein module CBL-CIPK in abiotic stress and light signaling responses in green algae.
    Sanyal SK; Sharma K; Bisht D; Sharma S; Sushmita K; Kateriya S; Pandey GK
    Int J Biol Macromol; 2023 May; 237():124163. PubMed ID: 36965564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A calcium signalling network activates vacuolar K
    Tang RJ; Zhao FG; Yang Y; Wang C; Li K; Kleist TJ; Lemaux PG; Luan S
    Nat Plants; 2020 Apr; 6(4):384-393. PubMed ID: 32231253
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity.
    Aibara I; Miwa K
    Plant Cell Physiol; 2014 Dec; 55(12):2027-36. PubMed ID: 25378690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two spatially and temporally distinct Ca
    Behera S; Long Y; Schmitz-Thom I; Wang XP; Zhang C; Li H; Steinhorst L; Manishankar P; Ren XL; Offenborn JN; Wu WH; Kudla J; Wang Y
    New Phytol; 2017 Jan; 213(2):739-750. PubMed ID: 27579668
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Ca
    Plasencia FA; Estrada Y; Flores FB; Ortíz-Atienza A; Lozano R; Egea I
    Front Plant Sci; 2020; 11():599944. PubMed ID: 33519853
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Potassium nutrition, sodium toxicity, and calcium signaling: connections through the CBL-CIPK network.
    Luan S; Lan W; Chul Lee S
    Curr Opin Plant Biol; 2009 Jun; 12(3):339-46. PubMed ID: 19501014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification and characterization of CBL and CIPK gene families in eggplant (Solanum melongena L.).
    Li J; Jiang MM; Ren L; Liu Y; Chen HY
    Mol Genet Genomics; 2016 Aug; 291(4):1769-81. PubMed ID: 27287616
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Kinase CIPK23 Inhibits Ammonium Transport in
    Straub T; Ludewig U; Neuhäuser B
    Plant Cell; 2017 Feb; 29(2):409-422. PubMed ID: 28188265
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms and Physiological Roles of the CBL-CIPK Networking System in Arabidopsis thaliana.
    Mao J; Manik SM; Shi S; Chao J; Jin Y; Wang Q; Liu H
    Genes (Basel); 2016 Sep; 7(9):. PubMed ID: 27618104
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing complexity and versatility: how the calcium signaling toolkit was shaped during plant land colonization.
    Edel KH; Kudla J
    Cell Calcium; 2015 Mar; 57(3):231-46. PubMed ID: 25477139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A calcium sensor - protein kinase signaling module diversified in plants and is retained in all lineages of Bikonta species.
    Beckmann L; Edel KH; Batistič O; Kudla J
    Sci Rep; 2016 Aug; 6():31645. PubMed ID: 27538881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A grapevine Shaker inward K(+) channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions.
    Cuéllar T; Pascaud F; Verdeil JL; Torregrosa L; Adam-Blondon AF; Thibaud JB; Sentenac H; Gaillard I
    Plant J; 2010 Jan; 61(1):58-69. PubMed ID: 19781051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.