These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33388687)

  • 1. Coupling of silver nanoparticle-conjugated fluorescent dyes into optical fiber modes for enhanced signal-to-noise ratio.
    Thi Tran NH; Phan TB; Nguyen TT; Ju H
    Biosens Bioelectron; 2021 Mar; 176():112900. PubMed ID: 33388687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mass-Producible and Versatile Sensing System: Localized Surface Plasmon Resonance Excited by Individual Waveguide Modes.
    Ding Z; Stubbs JM; McRae D; Blacquiere JM; Lagugné-Labarthet F; Mittler S
    ACS Sens; 2018 Feb; 3(2):334-341. PubMed ID: 29318873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative decay engineering 3. Surface plasmon-coupled directional emission.
    Lakowicz JR
    Anal Biochem; 2004 Jan; 324(2):153-69. PubMed ID: 14690679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles.
    Hsieh BY; Chang YF; Ng MY; Liu WC; Lin CH; Wu HT; Chou C
    Anal Chem; 2007 May; 79(9):3487-93. PubMed ID: 17378542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence enhancement of silver nanoparticle hybrid probes and ultrasensitive detection of IgE.
    Li H; Qiang W; Vuki M; Xu D; Chen HY
    Anal Chem; 2011 Dec; 83(23):8945-52. PubMed ID: 21988285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiative decay engineering 7: Tamm state-coupled emission using a hybrid plasmonic-photonic structure.
    Badugu R; Descrovi E; Lakowicz JR
    Anal Biochem; 2014 Jan; 445():1-13. PubMed ID: 24135654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication and measurement of fiber optic localized surface plasmon resonance sensor based on gold nanoparticle dimer.
    Kim HM; Park JH; Lee SK
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120034. PubMed ID: 34116419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles.
    Chen Y; Munechika K; Ginger DS
    Nano Lett; 2007 Mar; 7(3):690-6. PubMed ID: 17315937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. LSPR-mediated high axial-resolution fluorescence imaging on a silver nanoparticle sheet.
    Usukura E; Yanase Y; Ishijima A; Kuboki T; Kidoaki S; Okamoto K; Tamada K
    PLoS One; 2017; 12(12):e0189708. PubMed ID: 29244869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localized surface plasmon resonance-based fiber-optic sensor for the detection of triacylglycerides using silver nanoparticles.
    Baliyan A; Usha SP; Gupta BD; Gupta R; Sharma EK
    J Biomed Opt; 2017 Oct; 22(10):1-10. PubMed ID: 29076305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence Based on Surface Plasmon Coupled Emission for Ultrahigh Sensitivity Immunoassay of Cardiac Troponin I.
    Tran VT; Ju H
    Biomedicines; 2021 Apr; 9(5):. PubMed ID: 33919217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A localized surface plasmon resonance light scattering-based sensing of hydroquinone via the formed silver nanoparticles in system.
    Wang H; Chen D; Wei Y; Yu L; Zhang P; Zhao J
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):2012-6. PubMed ID: 21592852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-mediated fluorescence with distance independence: from model to a biosensing application.
    Cao SH; Zou ZX; Weng YH; Cai WP; Liu Q; Li YQ
    Biosens Bioelectron; 2014 Aug; 58():258-65. PubMed ID: 24657646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic enhancement of single-molecule fluorescence near a silver nanoparticle.
    Fu Y; Zhang J; Lakowicz JR
    J Fluoresc; 2007 Nov; 17(6):811-6. PubMed ID: 17922175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel aptasensor based on silver nanoparticle enhanced fluorescence.
    Wang Y; Li Z; Li H; Vuki M; Xu D; Chen HY
    Biosens Bioelectron; 2012 Feb; 32(1):76-81. PubMed ID: 22209330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core.
    Rifat AA; Mahdiraji GA; Chow DM; Shee YG; Ahmed R; Adikan FR
    Sensors (Basel); 2015 May; 15(5):11499-510. PubMed ID: 25996510
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates.
    Jia S; Bian C; Sun J; Tong J; Xia S
    Biosens Bioelectron; 2018 Aug; 114():15-21. PubMed ID: 29775854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing.
    Andrade GF; Fan M; Brolo AG
    Biosens Bioelectron; 2010 Jun; 25(10):2270-5. PubMed ID: 20353887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dip biosensor based on localized surface plasmon resonance at the tip of an optical fiber.
    Sciacca B; Monro TM
    Langmuir; 2014 Jan; 30(3):946-54. PubMed ID: 24397817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.